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The fundamental laws necessary for the mathematical 
treatment of a large part of physics and the whole of 
chemistry are thus completely known, and the 
difficulty lies only in the fact that application of these 
laws leads to equations that are too complex to be 
solved. 

P.A.M. Dirac (1927)
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Modelling Basics
• Morphology model

• Geometry

• Material properties

• Process model 

based on first principles (balance laws)

➡ reliable model with prognostic quality
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Modelling Basics
• A model is an answer, it needs a question.

• The model should be as detailed as necessary to 
answer the question and as simple as possible.  
„Man soll die Dinge so einfach machen wie 
möglich, aber nicht einfacher.” (Einstein)

• Complexity <–> Reliability

• Simulation technique is decisive for the complexity 
limit
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Modeling and Simulation

Mathematical Model
System of differential equations

Numerical approximation
Numerical methods
discretisation and solver

Software Tools

Applications,
Mathematics (Analysis)

Numerics

Computer Science
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Mathematical Model
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Numerical approximation
Numerical methods
discretisation and solver

Software Tools

Numerics
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Modeling and Simulation

Mathematical Model
System of differential equations

Numerical approximation
Numerical methods
discretisation and solver

Software Tools

Mapping Reality

Errors,
Complexity

Complexity,
Flexibility, ...

Hardware Limiting Resource



Gabriel Wittum
AMCS, CEMSE, KAUST

G-CSC,University of Frankfurt

Adaptivity
• Refine grid where needed

Stefan Lang
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Adptivity 3d

Peter Bastian
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Complexity - HPC Paradoxon

Algorithm complexity:  Execution time E = O(nq), q > 1

Buying a new computer: On a new i.e. larger and faster 
computer, larger problems will be computed. Assume the new 
computer is a factor å > 1 faster and larger than the old one.
To compute a problem of size å·n, the new computer needs

The larger and faster the computer becomes, the longer the 
execution time will be!
Large scale computing needs q=1 i.e. optimal algorithms!

O(åq·nq) = å(q-1) å E .
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Adaptivity Parallelism

Multigrid

Simulation System UG4 
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Simulation System UG4 
Engineering
• porous media flow
• CO2 injection
• geothermal flows
• CFD
• struct. mechanics
• energy research
• chemical eng.
• process eng.
• biomass ferment.
• aeroacoustics

Medicine (Health)
• transdermal drug delivery
• signal processing in neurons
• HC virus replication
• infectious diseases

Finance
• option pricing
• credit risk estimation
• portfolio optimization
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≈ 4     Developers
New code ≈4 
≈ 200 person years for development

M. Breit 
S. Grein 
A. Grillo 
M. Heisig 
I. Heppner 
M. Hoffer 
S. Höllbacher 
M. Knodel 
M. Lampe 
L. Larisch

B. Lemke 
D. Logaschenko  
I. Muha 
A. Nägel 
C. Poliwoda 
R. Prohl 
G. Queisser 
S. Reiter  
M. Rupp

P. Schröder 
M. Stepniewski 
S. Stichel 
A. Vogel 
C. Wehner 
G. Wittum 
K. Xylouris
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≈4 I. Heppner, A. Nägel, S. Reiter, M. Rupp, A. Vogel

• completely new code, strongly modularized

• hybrid unstructured grids, hanging nodes

• finite volumes of arbitrary order, finite elements

• parallel adaptive and robust multigrid

• highly scalable

• FAMG as separate module
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≈4 I. Heppner, M. Hoffer, A. Nägel, S. Reiter, M. Rupp, A. Vogel

• efficient parallel data migration via MPI-based 
Parallel Communication Layer (PCL) (Reiter et al 2015)

• Tool for gridding: ProMesh (Reiter 2017)

• GUI based on VRL (Hoffer, W. 2014)
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≈ 4 GUI (M. Hoffer)

• Based on VRL (Visual Reflection Library) 

• allows graphical control of simulation
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≈ 4 GUI  (M. Hoffer)

• Based on VRL (Visual Reflection Library) 

• allows graphical control of simulation
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Parallel Scaling

• ≈ 3 (1999):  
Parallelization based on DDD, strongly limited 
parallelization (≤ 4096 cores)

• ≈ 4 (2014): 
Parallelization based on PCL, perfect scaling up 
to 264144 cores.  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UG4: GMG Weak Scaling
• Laplacian 3d, GMG, structured
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Weak Scaling UG4

• Linear elasticity 3d uniform
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Modeling and 
Computation of 

Thermohaline Flow 
in Heterogenous 

porous media 
S. Stichel, A. Grillo, M. Lampe, 

D. Logaschenko,  S. Reiter, A Vogel, G. Wittum
in cooperation with

S. Attinger, E. Fein, W. Kinzelbach, A. Schneider
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Density Driven Groundwater Flow

• Saltwater intrusion

• Flow around saltdomes

• Upconing
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D3F

• Distributed Density Driven Flow

+ b.c.; with
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D3F

• complicated domains w. unstructured grids (≈)
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D3F

• Full density dependent non-linear dispersion 

• fully parallel adaptive
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D3F Parallel Efficiency

• Uniform refinement 

weak scaling 

• Adaptive refinement 

weak scaling

• Lang, S., Wittum, G.: Large scale density driven flow simulations using 
parallel unstructured grid adaptation and local multigrid methods. 
Concurrency Computat., 17, 11, 1415 - 1440, Oct. 2005.
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Weak Scaling UG4
• Thermohaline flow in porous media, 2d Elder problem
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32 8 2.102.274 11 6,15 - 4,93 - 8,62 - 37,96 -
128 9 8.398.850 11 6,16 99,8 4,86 101,4 8,70 99,1 38,15 99,5
512 10 33.574.914 11 6,11 100,7 4,97 99,2 9,31 92,6 39,37 96,4

2.048 11 134.258.690 11 6,18 99,5 5,09 96,9 9,45 91,2 40,18 94,5
8.192 12 536.952.834 11 6,13 100,3 5,03 98,0 9,96 86,6 41,11 92,3

32.768 13 2.147.647.490 10 6,17 99,6 6,22 79,3 10,84 79,6 48,45 78,3
131.072 14 8.590.262.274 10 6,10 100,7 5,99 82,3 10,66 80,9 53,37 71,1

Tabelle 5.6: Schwache Skalierungsstudie für dichtegetriebene Grundwasserströmung auf Juqueen.
T : Laufzeit [s], E: Effizienz [%], pe: Prozesse, L: Gitterlevel, DoFs: Freiheitsgrade, Niter: Mehrgitteriterationen.
Subskripte: all: ganzes Programm, ass: Assemblierung, init: Lösersetup, gmg: geometrischer Mehrgitterlöser.
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Thermohaline Flows

• Solving 

Fick’s law due to Forchheimer is used (cf., for example, [11]). In our paper, however,
we consider only the di⇤usivity coe⌃cient D, and the “standard” form of Fick’s law
for the sake of simplicity.

Following [2], we assumed for our purposes that LTT is constant. However, it
should be noticed that, since LTT represents the coe⌃cient of thermal conductivity
of the mixture as a whole, it has to be defined through some average of the thermal
conductivities of the solid- and the fluid-phase (the latter including all of its con-

stituents). For example, in [7], LTT is defined as LTT = ⇥
�f

f ⇥
�f�1
r , where ⇥r is the

thermal conductivity of rock, and ⇥f is an e�ective thermal conductivity of the fluid-
phase. Whereas it is licit to assume that ⇥r is constant within a certain temperature
range, the thermal conductivity of the fluid-phase depends also on composition, i.e.
the amount of solute and solvent. Moreover, if the dynamic regime of the fluid is
such that also thermal dispersion e⇤ects have to be considered, Diersch and Kolditz
[11] consider LTT = ⇤f⇥f + (1 � ⇤f )⇥r + f(⌅s)(Ddd � DI), where f(⌅s) is some
function of the solute mass fraction, and Ddd is given in eq. (3.28).

Finally, the experimental values of the Soret coe⌃cient are taken from [26].

4 Field Equations

Under the hypotheses (i)–(vi) given in section 2.2, and the assumption of very
small fluid-phase velocity and solute di⇤usive velocity, the problem of density- and
temperature-driven flow in entirely described by the following set of field equations:

⇤f
⌃�⇥f

⌃t
+⇤ · (�⇥fqf ) = 0, (4.1)

⇤f
⌃(�⇥f⌅s)

⌃t
+⇤ · (�⇥f⌅sqf + Jd) = 0, (4.2)

⇤f �⇥f�
Df

�Sf

Dt
+ (1� ⇤f )⇥r�

⌃ �Sr

⌃t
+⇤ · (JT � �µswJd) = 0, (4.3)

which represent the balance of mass of the fluid-phase, the balance of mass of the
solute, and the balance of energy of the mixture as a whole, respectively. In eqs.
(4.1)–(4.3), the free unknowns are pressure, p, mass fraction, ⌅s, and temperautre,
�. Indeed, the mass density �⇥f is given in eq. (3.9), the entropies �Sf and �Sr are
deducible from the constitutive model, and the specific discharge, qf , and the fluxes
Jd and JT are specified in eqs. (3.1), (3.20), and (3.21), respectively. The problem
is therefore mathematically closed.

4.1 The Boussinesq-Oberbeck approximation

Equations (4.1)-(4.3) are coupled and highly nonlinear. A considerable simplification
can be obtained by framing the problem under investigation as a free convection
problem, in which a fluid out of mechanical equilibrium features internal currents
tending to mix the fluid and bring it to a constant temperature and constant solute
mass fraction [14]. In this respect, we adopt the Boussinesq-Oberbeck approximation
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where the notation ⇧w = 1�⇧s has been introduced for the sake of brevity. Results
(3.9), (3.14), and (3.15) yield the following Gibbs free energy density:

⇧Gf (p, ⇧s, �) = ⇧Gi
f (⇧s, �) +

p

⇧⇤f (⇧s, �)
� Cf

⇤
� ln

�
�
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⇥
��

⌅
, (3.16)

where

⇧Gi
f (⇧s, �) = ⇧s

2R�
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⌅
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⌅
. (3.17)

We remark that both chemical potentials µs and µw, and µi
s and µi

w satisfy the main
result of Gibbsian thermodynamics, i.e. their mass average equals the Gibbs free
energy density:

⇧Gf (p, ⇧s, �) = ⇧s⇧µs(p, ⇧s, �) + (1� ⇧s)⇧µw(p, ⇧s, �), (3.18)

⇧Gi
f (⇧s, �) = ⇧s⇧µi

s(⇧s, �) + (1� ⇧s)⇧µi
w(⇧s, �). (3.19)

Looking at the explicit forms of the relative chemical potential, ⇧µs (cf. eq. (3.14)),
and the entropy density, ⇧Sf (cf. eq. (3.15)), we notice that each of these quantities can
be written as the sum of two functions: one of them depends only on the independent
constitutive variables, ⇧s and �, and is thus said to be constitutive; the other one
contains the Lagrange multiplier, p, as well as the independent constitutive variables,
and is thus said to be constrained, for it represents the contribution of the constraint
⇤f ⇥ ⇧⇤f (⇧s, �) to both ⇧µsw and ⇧Sf . The constrained parts of ⇧µsw and ⇧Sf produce

no dissipation. On the other hand, only the constitutive parts of ⇧µsw and ⇧Sf play
a role on the determination of the material coe⇤cients featuring in the Onsager’s
relations.

3.2 Phenomenological Coe�cients

After substituting the expression of the relative chemical potential (3.14) into the
Onsager’s relations (3.2)-(3.3), and explicitly computing the gradient of µsw ⇥ ⇧µsw,
one finds

Jd = �⌅f⇤fD⇤⇧s � ⌅f⇤fD
kp

p
⇤p� ⌅f⇤fDS⇧s(1� ⇧s)⇤�, (3.20)

JT = �⌅f⇤fDQ⇤⇧s � ⌅f⇤fDQ
kp

p
⇤p�

⇤
LTT � ⌅f⇤f

DQhsw

�⇤bµi
sw

⇤⇥s

⌅
⇤�, (3.21)

where D is the di�usivity coe⇥cient, i.e.

D :=
Ldd

�

�⇧µi
sw

�⇧s
, (3.22)
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is necessary that
⇤

�=w,s �� = �⇧fpI. By using eq. (2.24), this condition can be
applied to show that the absolute chemical potentials µ� (� ⌃ {w, s}) are given by

µ� = ⇤� +
p�

⌅f⌃�
, � ⌃ {w, s}, (2.28)

where p� is said to be the partial pressure of the fluid-phase constituent C�. Fur-
thermore, the Cauchy stress tensor of constituent C� is given by �� = �⇧fp�I, and
the partial pressures satisfy

⇤
�=w,s p� = p.

We notice that the only additional free unknown which contributes to the set
Ufree is the pressure p. Indeed, this Lagrange multiplier must be determined by
solving the mass balance equation of the fluid-phase as a whole. Finally, we remark
that both the solute relative chemical potential ms ⇤ µsw (cf. eq. (2.23)) and the
fluid-phase entropy density Sf (cf. eq. (2.25)a) consist of two parts. The first part
on the RHS of eqs. (2.23) and (2.25a) is related to the unconstrained Helmholtz free
energy density, ⇤f ⇤ ⌅⇤f (⌃s, ⇥), and is thus said to be constitutive. The second terms
are contributions due to the constraint ⌅f = ⌅⌅f (⌃s, ⇥) and feature the Lagrange
multiplier p.

The results (2.23)-(2.27), the constraint
⇤

�=w,s ⌃su�, and the further assump-
tion of smallness of both solute di⌅usive velocity, us, and fluid-phase velocity, vf

(i.e. ||us||⇧ 1, and ||vf ||⇧ 1), yield the following form of the residual dissipation
inequality:

⌅⇥⇧�diss = �qf · (⌦p� ⌅fg)� Jd ·⌦µsw �⇥�1(JT � µswJd) ·⌦⇥ ⌅ 0, (2.29)

where we introduced the notation qf := ⇧fvf for the specific discharge [6], and
Jd := ⇧f⌅f⌃sus for the di⌅usive mass flux of the solute. A sketch of derivation of
eq. (2.29) from eq. (2.14) is given in Appendix A.

3 Thermodi�usion

In order to focus our attention on thermodi⌅usion, we assume here that the specific
discharge, qf , is coupled neither to the di⌅usive mass flux, Jd, nor to the thermal
flux, JT . If it is also assumed that the considered porous medium is isotropic, then,
after diving inequality (2.29) by ⇥, the Onsager’s relations can be written as

qf = � k

⇤f
(⌦p� ⌅fg), (3.1)

Jd = �⇧f⌅fLdd⌦
�

µsw

⇥

⇥
� ⇧f⌅fLdT

⌦⇥

⇥2
, (3.2)

JT = �⇧f⌅fLTd⌦
�

µsw

⇥

⇥
� LTT⌦⇥, (3.3)

where k is the porous medium permeability, ⇤f denotes the fluid-phase dynamic
viscosity, Ldd and LTT are the phenomenological coe⌥cients of “pure” mass and
thermal di⌅usion, respectively, and LdT and LTd are the Onsager’s cross coe⌥cients,

9

(Onsager)
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Alfio Grillo, Michael Lampe, Gabriel Wittum: Modelling and 
Simulation of temperature-density-driven flow and thermodiffusion in 
porous media. Journal of Porous Media, 2010.

Thermohaline Flows

Solving 

Fick’s law due to Forchheimer is used (cf., for example, [11]). In our paper, however,
we consider only the di⇤usivity coe⌃cient D, and the “standard” form of Fick’s law
for the sake of simplicity.

Following [2], we assumed for our purposes that LTT is constant. However, it
should be noticed that, since LTT represents the coe⌃cient of thermal conductivity
of the mixture as a whole, it has to be defined through some average of the thermal
conductivities of the solid- and the fluid-phase (the latter including all of its con-

stituents). For example, in [7], LTT is defined as LTT = ⇥
�f

f ⇥
�f�1
r , where ⇥r is the

thermal conductivity of rock, and ⇥f is an e�ective thermal conductivity of the fluid-
phase. Whereas it is licit to assume that ⇥r is constant within a certain temperature
range, the thermal conductivity of the fluid-phase depends also on composition, i.e.
the amount of solute and solvent. Moreover, if the dynamic regime of the fluid is
such that also thermal dispersion e⇤ects have to be considered, Diersch and Kolditz
[11] consider LTT = ⇤f⇥f + (1 � ⇤f )⇥r + f(⌅s)(Ddd � DI), where f(⌅s) is some
function of the solute mass fraction, and Ddd is given in eq. (3.28).

Finally, the experimental values of the Soret coe⌃cient are taken from [26].

4 Field Equations

Under the hypotheses (i)–(vi) given in section 2.2, and the assumption of very
small fluid-phase velocity and solute di⇤usive velocity, the problem of density- and
temperature-driven flow in entirely described by the following set of field equations:

⇤f
⌃�⇥f

⌃t
+⇤ · (�⇥fqf ) = 0, (4.1)

⇤f
⌃(�⇥f⌅s)

⌃t
+⇤ · (�⇥f⌅sqf + Jd) = 0, (4.2)

⇤f �⇥f�
Df

�Sf

Dt
+ (1� ⇤f )⇥r�

⌃ �Sr

⌃t
+⇤ · (JT � �µswJd) = 0, (4.3)

which represent the balance of mass of the fluid-phase, the balance of mass of the
solute, and the balance of energy of the mixture as a whole, respectively. In eqs.
(4.1)–(4.3), the free unknowns are pressure, p, mass fraction, ⌅s, and temperautre,
�. Indeed, the mass density �⇥f is given in eq. (3.9), the entropies �Sf and �Sr are
deducible from the constitutive model, and the specific discharge, qf , and the fluxes
Jd and JT are specified in eqs. (3.1), (3.20), and (3.21), respectively. The problem
is therefore mathematically closed.

4.1 The Boussinesq-Oberbeck approximation

Equations (4.1)-(4.3) are coupled and highly nonlinear. A considerable simplification
can be obtained by framing the problem under investigation as a free convection
problem, in which a fluid out of mechanical equilibrium features internal currents
tending to mix the fluid and bring it to a constant temperature and constant solute
mass fraction [14]. In this respect, we adopt the Boussinesq-Oberbeck approximation

14
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• opposite effects of temperature and salt 
concentration 

Temperature ↑ 

salt water ↓ 

• connection of mass flux with temperature 
gradient (Ludwig-Soret effect) 

• connection of heat flux with concentration 
gradient (Dufour effect)

Thermohaline Flows
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Example

• Moving parcel, benchmark problem from 
Oldenburg, Pruess, 1999 (2d)
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• Dufour effect -  
negative buoyancy

Thermohaline Flows
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• Ludwig effect – 
positive buoyancy

Thermohaline Flows
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Grid Dependence

Symmetry breaking due to grid refinement 
The number of fingers depends on grid size and time.
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Fractured Media



Gabriel Wittum 
G-CSC, Uni Frankfurt

Fractured Media

• Low dimensional formulation 

Multiphase flow 

R. Helmig; O. Kolditz; V. Reichenberger; … 

• Multiscale modeling and numerics: 
Dynamic coupling between micro and 
macroscales
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Flow in Fractured Media

• low dimensional <-> full dimensional

5. Smooth grid pr eserving the layers. 

Remark 3.1 1: 

• The complexity of Algorithm 3.4 is O ( n ). 

• The complexity of Algorithm 3.5 is O ( m *µ). 

• The overall complexity of AR TE is dominated by the one of AR T , which is lar ger 
than O ( N ), N  denoting the number of all grid points.   

Pr oof: Immediate. 

4. Examples 

4.1 Model Problems 

The algorithms intr oduced above have been applied to several samples. The first ex- 
ample is a cube with one thin layer . Fig. 4.1. shows the r esults after the first step of 
AR TE (Algorithm 3.10). 

Figure 4.1: Cube with one fractur e (left), r esult after step 1 of AR TE, Alg. 3.10 (left). 

Since this cube has only one thin layer , step 3 of is skipped. Figur e 4.2 shows the final 
r esult of Algorithm 3.10. Since the fractur e extends to the boundary and has constant 
thickness, we obtain a discr ete thin layer consisting entir ely of prisms. 

8 

Figure 4.2: Final r esult of Algorithm 3.10 after expansion of the thin layer . 

The second example is a cube with an interior fractur e shown in Figur e 4.3. The left 
pictur e in Fig. 4.3 shows the domain. The right pictur e shows the r esult of the first 
step of AR TE. For a better visibility only the grid on the fractur e is shown. 

Figure 4.3:  Domain with interior fractur e, pictur e of domain (left), 
pictur e of the fractur e after first step of Algorithm 3.10 (right). 

Since the fractur e is not cr ossing the boundary , we only expand interior nodes,r esul- 
ting in a discr ete thin layer consisting of 90 T etrahedra, 86 pyramids and 442 prisms 
as shown in Figur e 4.4. 
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Representation of fractures:  

1. Polyhedral faces + pointwise thickness 

2. expand to volume
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Fracture Extrusion in 3d

Extrusion of a triangle and a quadrilateral.

Extrusion of a 2d fractured geometry.
Left: 2d source, Middle: boundary surfaces, Right: Volume geometry.

Created with ProMesh3.

Mittwoch, 8. Dezember 2010
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Flow in Fractured Media

• Grid follows the anisotropic direction rectangularly

Figure 4.9: Expansion of intersecting fractur es by Algorithm 3.4 

Figure 4.10: Expansion of intersecting fractur es by Algorithm 3.5 

4.2 Realistic Problems 

AR TE has been used to generate 3d meshes for r ealistic domains fr om applications. 
In the sequel we show two examples. 

Figur e 4.1 1 shows the W aste Isolation Pilot Plant in Carlsbad, New Mexiko. The do- 
main is a layer ed salt formation with two thin layers. For r easons of visibility the z- 
axis is scaled by a factor of 20. 

Figur e 4.1 1: The WIPP  domain 

12 

successful treatment of anisotropy possible: ARTE 

Fuchs, W., 2003, Feuchter, 2007
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Low Dimensional Model

• Density driven flow model 

average across fracture

2.4. Average along the thickness: The e�ective low-dimensional fracture.285

We average Eqs. (8)-(11), with � = f , in the case of a fracture whose286

geometry follows the description given in secton 2.3, and whose thickness is287

much smaller than the characteristic size of the computational domain, �.288

The average is performed along the thickness of the fracture according to289

the averaging method introduced by Bear [6][7][8] and Bear and Bachmat [9].290

For a given field F (either a scalar, a vector, or a tensor field), this averaging291

technique is based on the definition of the following operator292

⌃F ⌥(t, x, y) :=
1

⇥

⇥ �/2

��/2

F (t, x, y, z)dz. (16)

In the following, we use the following notation for the averaged values of the293

concentration and pressure in the fracture:294

c̄f := ⌃cf⌥, and p̄f := ⌃pf⌥. (17)

We remark that our definition (16) is slightly di⇥erent from the more general295

one given by Bear [7]. Indeed, in our case, the shape of the fracture is296

assumed to be time independent.297

If F and A are a scalar and a vector field, respectively, then the average298

⌃FA⌥ is given by299

⌃FA⌥ = ⌃F ⌥⌃A⌥+ ⌃ ⇤F ⇤A⌥, (18)

where the quantities ⇤F and ⇤A are the fluctuations of the fields F and A,300

respectively, i.e. ⇤F := F � ⌃F ⌥ and ⇤A := A � ⌃A⌥. Furthermore, the301

following results hold true:302

⌃⇧tF ⌥(t, x, y) = ⇧t⌃F ⌥(t, x, y), (19)

⌃� · A⌥ = �⇥ · ⌃A⇥⌥+
A(2) · n(2) + A(1) · n(1)

⇥
. (20)

In eq. (20), A⇥ = P.A =
�

k=x,y Akek is the projection of A =
�

j=x,y,z Ajej303

onto the (x, y)-plane, which is spanned by the unit vectors ex and ey of the304

R3-canonical basis {ex, ey, ez}, �⇥ = P.� is the surface divergence operator305

defined on this plane, and P := (I� ez ⇤ ez) is the projection operator. The306

unit vectors n(1) and n(2) are antiparallel, normal to the surfaces S (1) and307

S (2), respectively, and are directed in both cases from the fracture, F , into308

the surrounding medium, M . The quantities A(2) and A(1) denote the values309

taken by the vector field A on the surfaces S (2) and S (1), respectively.310

10
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Transmission Conditions

• Full dimensional: 

Continuity of normal fluxes 

fracture boundary ⌃F = B ⇥S (1) ⇥S (2). The boundary ⌃F is modelled366

as an simple interface, i.e. an interface that satisfies the following three367

requirements: i) it is a narrow zone whose thickness is of the order of the368

REV length scale; ii) it does not constitute an actual barrier between the369

two adjacent media; iii) the two adjacent media are in direct thermodynamic370

contact.371

Since we assumed that the delimiting surfaces S (1) and S (2) are planes372

parallel to the (x, y)-plane, the unit vectors normal to these surfaces and373

“poiting” from F into M are given by n and �n, respectively. The unit374

vector normal to B and tangent to the (x, y)-plane will be denoted by ⌧ .375

Conditions at the fracture-medium interface for a full-dimensional fracture.376

The mass balance at the fracture-medium interfaces is given by the continuity377

of the normal components of the mass fluxes of both the fluid-phase as a whole378

and the brine. When referred to the delimiting surfaces S (1) and S (2), these379

conditions read (in explicit form)380

�⇥(cf )
Kf

µ

�
⌃pf

⌃n
� ⇥(cf )gn

⇥
= �⇥(cm)

Km

µ

�
⌃pm

⌃n
� ⇥(cm)gn

⇥
, (42)

�Df

�
1� ⇥�

⇥pW
cf

⇥
⌃cf

⌃n
= �Dm

�
1� ⇥�

⇥pW
cm

⇥
⌃cm

⌃n
. (43)

Analogously, when referred to the band-shaped lateral boundary, ⌃B, one381

obtains382

�⇥(cf )
Kf

µ

�
⌃pf

⌃⇤
� ⇥(cf )g⇥

⇥
= �⇥(cm)

Km

µ

�
⌃pm

⌃⇤
� ⇥(cm)g⇥

⇥
, (44)

�Df

�
1� ⇥�

⇥pW
cf

⇥
⌃cf

⌃⇤
= �Dm

�
1� ⇥�

⇥pW
cm

⇥
⌃cm

⌃⇤
. (45)

The balance of momentum, under the hypotheses of macroscopically inviscid383

fluid and negligible advective contributions, implies that both the pressure,384

p�, and the brine concentration, c�, are continuous across S (1) and S (2)
385

[22]. Theferfore, we may write386

pf = pm, and cf = cm, (46)

for the fluid-phase and the brine, respectively. We use the balance laws387

(42)-(46) for modelling the interaction between the fracture, F , and the388
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Continuity of pressure and concentration

fracture boundary ⌃F = B ⇥S (1) ⇥S (2). The boundary ⌃F is modelled366

as an simple interface, i.e. an interface that satisfies the following three367

requirements: i) it is a narrow zone whose thickness is of the order of the368

REV length scale; ii) it does not constitute an actual barrier between the369

two adjacent media; iii) the two adjacent media are in direct thermodynamic370

contact.371

Since we assumed that the delimiting surfaces S (1) and S (2) are planes372

parallel to the (x, y)-plane, the unit vectors normal to these surfaces and373

“poiting” from F into M are given by n and �n, respectively. The unit374

vector normal to B and tangent to the (x, y)-plane will be denoted by ⌧ .375

Conditions at the fracture-medium interface for a full-dimensional fracture.376

The mass balance at the fracture-medium interfaces is given by the continuity377

of the normal components of the mass fluxes of both the fluid-phase as a whole378

and the brine. When referred to the delimiting surfaces S (1) and S (2), these379

conditions read (in explicit form)380

�⇥(cf )
Kf

µ

�
⌃pf

⌃n
� ⇥(cf )gn

⇥
= �⇥(cm)

Km

µ

�
⌃pm

⌃n
� ⇥(cm)gn

⇥
, (42)

�Df

�
1� ⇥�

⇥pW
cf

⇥
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⌃n
= �Dm

�
1� ⇥�

⇥pW
cm

⇥
⌃cm

⌃n
. (43)

Analogously, when referred to the band-shaped lateral boundary, ⌃B, one381
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�
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⇥
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�
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⇥
, (44)

�Df

�
1� ⇥�

⇥pW
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⇥
⌃cf

⌃⇤
= �Dm

�
1� ⇥�

⇥pW
cm

⇥
⌃cm

⌃⇤
. (45)

The balance of momentum, under the hypotheses of macroscopically inviscid383

fluid and negligible advective contributions, implies that both the pressure,384

p�, and the brine concentration, c�, are continuous across S (1) and S (2)
385

[22]. Theferfore, we may write386

pf = pm, and cf = cm, (46)

for the fluid-phase and the brine, respectively. We use the balance laws387

(42)-(46) for modelling the interaction between the fracture, F , and the388
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Transmission Conditions (Grillo)

• Low dimensional 

the auxiliary vector fields

By adopting the convention ez = n = n(2) = �n(1), eq. (20) becomes311

⌅⌃ · A⇧ = ⌃⇥ · ⌅A⇥⇧+
A(2)

n + A(1)
n

�
, (21)

with A(2)
n := A(2) · n(2), A(1)

n := A(1) · n(1), and the conventions:312

A(1) := A(t, x, y,��/2) and A(2) := A(t, x, y, �/2). (22)

When the parameter � is very small, the second term on the RHS of eq.313

(21) can be regarded as the approximation of the normal derivative of the314

component An.315

The theory shown so far can be extended to more complicated fracture316

geometries. Furthermore, although we treated here only the case of a single317

fracture, the computations done in our paper are also applied to fractures318

with piecewise flat delimiting surfaces, and fracture networks. Because of the319

discretization of the region of observation �, the flat surfaces coincide with320

the sides of the elements that the fractures share with the embedding region.321

An approach similar to that present in this section has been recently322

adopted by Angot et al. [1].323

2.5. Averaged equations – Further simplifying assumptions324

The consistitutive law (6) defines the fluid-phase mass density as an a�ne325

function of the brine concentration. Moreover, since the mass densities of326

“pure water” and “pure brine”, ⇥pW and ⇥pB, are given constants in our327

formulation, the average of the function ⇥�(c�) reads328

⌅⇥�(c�)⇧ = ⇥(⌅cf⇧) ⇤ ⇥(c̄�) = ⇥pW + ⇥�c̄�. (23)

For ease of notation, we find it convenient to introduce the following two329

“auxiliary” vector fields330

Q� := ⇥pW q� � ⇥�J�, and P� := c�q� + J�. (24)

By virtue of eq. (24), the governing equations (10)-(11) become331

⌃ · Q� = 0, (25)

⇤⌥tc� +⌃ · P� = 0. (26)
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surrounding porous medium, M , in the case in which F is regarded as a389

full-dimensional object. Since the concentration of the brine is continuous390

across the interfaces, and the fluid-phase mass density is continuous too, the391

discontinuity of the normal derivatives of pressure and concentration is due392

to the abrupt changes of permeability and di�usivity when passing from the393

fracture to the embedding medium, and vice versa.394

In summary, the full-dimensional case is simulated by solving eqs. (REF)-395

(REF) in the M , and eqs. (REF)-(REF) in the fracture, F . The inferface396

conditions are given by (42)-(45).397

Conditions at the fracture-interface medium for a low-dimensional fracture.398

When the fracture is studied as an “equivalent” low-dimensional system,399

the interface conditions have to be rewritten in order for both matching the400

governing equations in averaged form (36) and (37), and being suitable for401

numerical computations. Looking at eqs. (36) and (37), we notice that the402

mass fluxes normal the surfaces S (1) and S (2) are combined in the auxiliary403

quantities Q(k)
fn and P (k)

fn , where k = 1, 2. The validity of eqs. (42) and (43)404

implies that each of these quantities is conserved when crossing the fracture-405

medium interface. This leads to the following conclusions406

Q(k)
fn = Q(k)

mn, and P (k)
fn = P (k)

mn, with k = 1, 2. (47)

When the fracture is considered as an equivalent low-dimensional object (i.e.407

the width � tends to zero), the delimiting surfaces S (2) and S (1) “ideally” lay408

one upon the other, and coincide with the mean surface S . Consequently,409

the band-shaped boundary, B, collapses to a closed line, i.e. the contour410

of S , which we denote by ⇧S . Although the equivalent fracture is now411

represented by S , the sums412

Q(2)
fn + Q(1)

fn =
�
⇥pW q(2)

fn � ⇥�J (2)
fn

⇥
+

�
⇥pW q(1)

fn � ⇥�J (1)
fn

⇥
, (48)

P (2)
fn + P (1)

fn =
�
c(2)
f q(2)

fn + J (2)
fn

⇥
+

�
c(1)
f q(1)

fn + J (1)
fn

⇥
, (49)

which are computed on the two sides of S , do not vanish in general, for they413

represent the “jump” of physical quantities that are processed in the fracture414

and exchanged with the surrounding medium through the surfaces S (1) and415

S (2). In other words, the surface S has to be treated as a discontinuity416

surface. We model this situation by assigning to each point of S three417

values of concentration, c(2)
f ⇥ c(2)

m , c̄f , and c(1)
f ⇥ c(1)

m , and three values of418

pressure, p(2)
f ⇥ p(2)

m , p̄f , and p(1)
f ⇥ p(1)

m . Then, we approximate the normal419
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are continuous across the fracture interfaces

notation234

⇤⇥ =
⇤pB � ⇤pW

⇤pB
, (7)

the quantities q� and J� in eqs. (3) and (4) transform into235

q� = �K�

µ
[ p� � ⇤�(c�)g], (8)

J� = �
�

⇤pW

⇤pW + ⇤⇥ c�
D�

⇥
 c�. (9)

Finally, the governing equations take on the form236

 · (⇤pB q� � ⇤⇥J�) = 0, (10)

⌅�⌥tc� + · (c�q� + J�) = 0, (11)

with � ⌅ {f, m}. Equations (6) and (8)-(11) are used for computations. In237

the case in which a given fracture is considered as a full-dimensional object,238

these equations will solved in the same form both in the fracture, F , and in239

the surrounding porous medium, M = �\F .240

We remark that the Boussinesq-Oberbeck approximation (which is not241

used in this paper) is retrieved by setting ⇤⇥ = 0 in eq. (10). This leads to242

the condition  · q� = 0.243

Throughout this paper, the fluid viscosity, µ, is assumed to depend neither244

on mass fraction nor on temperature, and the permeability tensor, K�, is245

assumed to be constant and isotropic, i.e. K� = K�I, both in the fracture246

and the surrounding porous medium.247

In general, the di⇥usion-dispersion tensor D� ([m2 · s�1]) describes both248

di⇥usion and mechanical dispersion, i.e.249

D� := Dd
� + Dmd

� . (12)

The di⇥usion tensor, Dd
�, accounts for tortuosity, and is therefore defined250

by Dd
� := DdT�, where Dd the scalar molecular di⇥usivity, and T� is the251

tortuosity tensor. In the following, we consider only the case of isotropic252

toruosity (i.e. T� = T�I). Furthermore, by postulating isotropic dispersivity,253

the tensor of mechanical disperion, Dmd
� , is transversely isotropic, and admits254

the expression given by Scheidegger [27], i.e.255

Dmd
� := at

�|q�|I + (a⌅
� � at

�)
q� ⇤ q�

|q�|
, (13)
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q� = �K�

µ
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with � ⌅ {f, m}. Equations (6) and (8)-(11) are used for computations. In237

the case in which a given fracture is considered as a full-dimensional object,238

these equations will solved in the same form both in the fracture, F , and in239

the surrounding porous medium, M = �\F .240

We remark that the Boussinesq-Oberbeck approximation (which is not241

used in this paper) is retrieved by setting ⇤⇥ = 0 in eq. (10). This leads to242

the condition  · q� = 0.243

Throughout this paper, the fluid viscosity, µ, is assumed to depend neither244
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and the surrounding porous medium.247
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�, accounts for tortuosity, and is therefore defined250
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tortuosity tensor. In the following, we consider only the case of isotropic252
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Lower Dim. Representation

@(�⌃⇢f )
@t

+r⌃ · (⇢fq⌃) +
1
✏
(⇢fq?)|ab = 0

@(�⌃⇢fcf )
@t

+r⌃ · (⇢fcfq⌃ � ⇢fD⌃r⌃cf ) +
1
✏
(⇢fcmq? � ⇢fD?�cm)|ab = 0

q⌃ = �K⌃

µf
(r⌃pf � ⇢fg⌃)

q? = �K?
µf

(�p� ⇢fg?)

(�cm)|a :=
ca � cf

✏/2
, (�p)|a :=

pa � pf

✏/2

�
a

b

?

⌃
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Henry‘s Problem (2d)
Intrusion of saltwater into freshwater aquifer

c = 0
qin = 6.6 · 10�5

@c

@n
= 0 ,

@p

@n
= 0

@c

@n
= 0 ,

@p

@n
= 0

c = 1
p = 10055.25 · z

Parameters in fracture: �⌃ = 2�m, K⌃ = 103 · Km
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Henry‘s Problem

• Parameterspressure is assumed. The parameters used for computations are listed in642

Table 1.

Symbol Quantity Value Unit
Dd Di�usion coe⇥cient 18.8571 · 10�6 [m2 s�1]

Dm = ⇤m Dd Di�usion coe⇥cient in the medium 6.6 · 10�6 [m2 s�1]
Df = ⇤f Dd Di�usion coe⇥cient in the fracture 13.2 · 10�6 [m2 s�1]

g Gravity 9.81 [m s�2]
Km Permeability of the medium 1.019368 · 10�9 [m2]
Kf Permeability of the fracture 1.019368 · 10�5 [m2]
⇤m Porosity of the medium 0.35 -
⇤f Porosity of the fracture 0.7 -
µ Viscosity 10�3 [kg m�1 s�1]
⇥w Density of water 1 · 103 [kg m�3]
⇥s Density of brine 1.025 · 103 [kg m�3]
at

� Transversal dispersivity length 0 [m]
al

� Longitudinal dispersivity length 0 [m]

Table 1: Simulation parameters for the Henry problem
643

The main results of Henry’s problem in the absence of fractures were644

summarized, for example, in [16]. Three main factors can be recognized.645

Since the incoming brine is heavier than pure water, it tends to ”fall” down646

and occupy the lower part of the domain. This alters the initial density of647

freshwater, and generates a density-driven flow. This is a non-potential flow648

characterized by the presence of vortices due to the inhomogeneity of the649

fluid-phase mass density.650

In the presence of fractures, vortices are also generated by the discontinu-651

ity of the permeability field in the domain. Both the flow and the concentra-652

tion profile are strongly a⌅ected, for fixed values of physical parameters, by653

the geometrical properties and the location of the fractures. In order to in-654

vestigate these e�ects, we propose the following four numerical experiments655

that were computed for both the full- and the equivalent low-dimensional656

case:657

1. Thin fracture placed at z = �0.5 m (cf. Fig. 4).658

The fundamental result is that the velocity in the fracture produces a659

deflection of the concentration isolines. The deflection is maximal when660

the right end of the fracture (sea side) is approached. We observed that661

the magnitude and the direction of the velocity in the fracture hinders662

the spreading of the brine in the fracture. This occurs because of the663

24
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ε = 3 mm, T = 5h
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Henry‘s Problem w. Fracture
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Henry‘s Problem w. Fracture
ε = 24 mm, T = 5h

full dim. rep. low dim. rep.
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Comparison d-1 and d dim

averaged c
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Rotational Flow

|r⇥ q|
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Rotational Flow
0.0

-1.8

-1.35

-0.9

-0.45

ε = 0.024



Gabriel Wittum 
G-CSC, Uni Frankfurt

Vorticity

with

@(�⇢c)
@t

+r · (⇢cq� ⇢Drc) = 0

@(�⇢)
@t

+r · (⇢q) = 0

q = �K

µ
(rp� ⇢g)

Vorticity is maximum, if the concentration gradient is 
perpendicular to gravity (i.e. isolines are parallel)

! = r⇥ q = �0K
µ rc ⇥ g

averaging procedure cumbersome because of the presence of terms like �⇤q, and the non-

linear dependence of � on ⇤. We circumvent this di⇤culty by re-formulating (2.1)–(2.5)

in such a way that the brine concentration, c�(⇤ �B
� ), instead of the mass fraction ⇤�.

By doing that, the constitutive law (2.5) reads

��(c�) = �pW + �⇥c�, (2.7)

with �⇥ := ⇤pB�⇤pW

⇤pB , and the laws of mass balance become

⌃ · (�pW q� � �⇥J�) = 0, (2.8)

⇥�⌃tc� +⌃ · (c�q� + J�) = 0, (2.9)

where

q� = � 1
µ�

K�(⌃p� � ��(c�)g), (2.10)

J� = �
�

⇤pW

⇤pW +⇤0c�
D�

⇥
⌃c�. (2.11)

When the fractures are modelled as d-dimensional regions, we use (2.1)–(2.5) in the

same form for both the fractures and the enclosing medium, and impose the interface

conditions (2.6). When the fractures are viewed as (d� 1)-dimensional domains, we use

two di�erent formulations of (2.7)–(2.11), depending on whether the equations are defined

in the fractures or in the enclosing medium. In particular, we adopt (2.7)–(2.11) in the

same form as shown above for the enclosing medium, and an averaged form of (2.7)–(2.11)

for the fractures. The form of the interface conditions is provided accordingly.

2.2 Averaging procedure

We assume that S (1) and S (2) are parallel planes, and introduce a global and a local

coordinate frame, denoted by {O, (X; Y ; Z)} and {o, (x, y, z)}, respectively. By requiring

10

and
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Henry in 3D
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Comparison 3d

✏ = 0.024

d-dim.

(d-1)
-dim.

✏ = 0.003
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Profile
Full dimensional
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Convection Rolls 3d

✏ = 0.024
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Observations

• For very thin fractures a low dim. model suffices
• In wider fractures, rotational flow can occur 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qrot :=
✏

2
Kf

Km

!f

!✓
(r⇥ qf )

qrot rotational flow velocity

|qf | > |qrot| rotational flow can be neglected

✓f :=
|qf |
|qrot|

 Flow Characterization

is dimensionless, characterizes flow✓f
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✓F := max
F

{✓f}

✓F < 1� � d-dimensional
✓F > 1 + � (d� 1)-dimensional

Criterion
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Criterion

max « > «0     =>   full dimensional
max « ≤ «0     =>   low dimensional

✓ =
✏ |!f |
kv✓k

Kf

Km

cf

c✓
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• The fracture representation is adapted during the 
computation

• Full-dimensional resolution is used only, if 
necessary

 

Dimensional Adaptivity

• We need:
• 2 grids (low and full dimensional)
• Transfer operators between these grids
• Criterion, when to use which formulation
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Transfer Operators

„Full -> Low“:
• Copy values on the interface (p corrected)
• Value on the interface is mean value across the fracture

„Low -> Full“:
• We assume quadratic behaviour of the function in the 

fracture. Values on the interface with corrected p and 
mean values are given.
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Transfer Operators
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Dimensional Adaptivity
✏ = 0.024
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Dimensional Adaptivity
✏ = 0.024
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Comparison in 3d 
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Comparison in 3d ✏ = 0.024
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Test Example

• Variation of
• Thickness and length of fracture
• Angle with gravity
• Parameters (Conductivity,...)
• Boundary conditions

ℓ/8 ℓ/8ℓ

ℓ/8

ℓ/8

ε
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Test Example
• 3 simulation runs for each configuration:

• d-dimensional
• (d-1)-dimensional
• dimensional-adaptive

• Comparison of results: 
• d-dim. is reference solution
• max. rel. error
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Test Example: Results
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Test Example: Results

Maximum

Mean value

Mean dev.

Statistics of N = 1261 test problems
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Comparison in 3d ✏ = 0.024
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Results Criterion 
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Transdermal Drug 
Delivery

D. Feuchter, M. Heisig, A. Nägel, S. Reiter,  
A. Vogel, G. Wittum, R. Wittum

together with
S. Hansen, G. Lee, 

C-M. Lehr, R. Lieckfeldt, U. Schäfer
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Skin Anatomy

Goals:
• Characterize Barrier 

(Permeability, Lag Time)
• Prediction of behavior in an 

exposure scenario

Primary Barrier: 
Stratum Corneum (SC)
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Aims
• Quantitative understanding of diffusion through 

stratum corneum and of permeation pathways

• Influence of corneocyte permeability

• Are corneocytes permeable?

• Influence of layer offset 

• Deriving reduced models
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Detailed SC Models
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Grid Problem

• highly anisotropic (aspect ratio: 150/1)
• => large approximation error
• remedy:
• anisotropic (“blue”) refinement! (Kornhuber, 1990)
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2d Brick and Mortar
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Base Grid

Gridlines follow
jumps of coefficients
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Grid Problem

• highly anisotropic (aspect ratio: 150/1)
• => large approximation error
• remedy:
• anisotropic (“blue”) refinement! (Kornhuber, 1990)
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Geometry Models
• 3d Cuboid Model

Cuboid modeller (C. Wagner, 2007)
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Tetrakaidekahedron (TKD)

Babett Lemke
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Geometry Models
• 3d Tetrakaidekahedra Model

U
N
C
O
R
R
E
C
TE

D
P
R
O
O
F

136 reports a weight fraction of lipids of 20–30% for dry SC, while [20]
137 determines a value around 15% under presumably natural envi-
138 ronmental conditions. However, variabilities are large and, e.g., a
139 dependence on the body site must be assumed.
140 In the field of modelling literature, a variety of parameters are
141 used to characterise the cell shape of the corneocytes. Parameters
142 are similar for the published computational models of brick-and-

143mortar type, (i.e., ribbon and cuboid). An overview is provided in
144Table 1.
145To conclude, it is consistent with the literature to assume a cell
146width of w ¼ 30 lm and a height of h ¼ 1:0 lm. For the lipid chan-
147nel, a thickness d ¼ 0:1 lm is chosen. In what follows, the SC mem-
148brane consists of N ¼ 10 layers of cells. This is at the lower end of
149what is reported in the literature, but still allows computations for
150the TKD model. However, as will be shown in the course of this
151work (cf. Fig. 8), the number of cell layers plays a subordinate role
152for N P 8.

1532.5. Model comparison

154It should be stressed that the overlaps x are comparable for all
155three models, as all definitions only refer to the horizontal axes and
156yield values in the interval (0,0.5). However, especially for the TKD
157model, it is a weak approximation to the tortuosity, as it neglects
158the three-dimensional structure.
159With respect to physiology, it is more important to consider the
160volume of the corneocytes. Regarding the influence of cell differen-
161tiation and thus the influence of the shape, it must be investigated
162whether cells with equal volumes yield comparable barrier proper-
163ties. Table 2 contains a comparison of the three geometry models.
164The parameters of interest are the lipid volume Vlip, the corneocyte
165volume Vcor , and the corneocyte surface area Acor . All quantities are
166given per base cell. The relative volume fractions hlip ¼ Vlip=Vcell,
167hcor ¼ Vcor=Vcell are then defined using the cell volume
168Vcell ¼ Vlip þ Vcor .
169Taking the TKD model geometries, e.g., with w ¼ 30 lm,
170a ¼ 8 lm, as a reference, we observe that a cuboid model with
171identical surface area must have an edge length w # 25 lm. To
172obtain Q2a geometry with identical volume, it requires to go
173down even to a value as low as w # 20 lm. For the sake of
174completeness, the cuboid geometry proposed in [13] is also
175included.

a b

Fig. 3. Illustration of a corneocyte cell of TKD type in side view (a) and top view (b). Geometric parameters: height h, edge length a and width w. Redrawn from [18].

Lipid matrix L
Corneocyte C

TKD base cell T

Periodic cell ensemble P 
(single layer)

X

Z

Y

Fig. 4. Corneocytes C (as parameterised in Fig. 3) are embedded in a lipid matrix L,
such that the distance of corresponding surfaces is d=2. The resulting base cell T is
triplicated and agglomerated to a periodic cell P. A stack of N ¼ 10 layers of cell P
yield the computational domain.

Table 1
Overview of parameters in recently published brick and mortar models.

Reference a ½lm% h ½lm% d ½lm% x Remark

Heisig et al. [21] 30 1.0 0.1 Variable
Johnson et al. [22] 40 0.8 0.075 1/9
Barbero and Frasch [23] 44 3.5 0.1 12/49 Swollen
Wang et al. [10] 30 0.8 0.081 Variable Partially swollen

31.2 2.8 0.081 Variable Swollen
Rim et al. [13] 40 0.8 0.075 1/2
Herein 30 1.0 0.1 Variable

A. Naegel et al. / European Journal of Pharmaceutics and Biopharmaceutics xxx (2009) xxx–xxx 3

EJPB 10464 No. of Pages 7, Model 5G

18 December 2008 Disk Used
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Please cite this article in press as: A. Naegel et al., A comparison of two- and three-dimensional models for the simulation ..., Eur. J. Pharm.
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Tetrakaidekahedra Model

• Basic Element: 

• Tetrakaidekahedron (14 faces)
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Cluster of TKDs
• 3d Tetrakaidekahedra Model

Dirk Feuchter
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Tetrakaidekahedra Model

• Theory of densest packing (Kepler 1611)

• What space-filling arrangement of regular polyhedra 
has minimal surface area?

• W. Thompson (Kelvin) 1885: Tetrakaidekahedron 
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TKD for cells in tissue

• Cells fill tissue => polyhedral form 
except for special functions (neuron, hepatocyte,…)

• Cell membrane is from lipid bilayers, a special 
material quite costly for the cell => surface 
minization
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• Flattening of Corneocytes

Tetrakaidekahedra Model

Dirk Feuchter
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Tetrakaidekahedra Model

• Overlap

Dirk Feuchter
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Process Model: Diffusion

@c(x, t)

@t
= rT · (D(x)rc(x, t)) in ⌦ ⇢ Rd

with D(x) = {
DLip(x)  for x ∈  Lipid .
DCor(x)  for x ∈  Corneocyte .
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Process Model: Diffusion

Transmission conditions on internal interfaces

Boundary and initial conditions

∂c(x, t)
∂ ⃗n

= 0 on ∂Ωl, ∂Ωr

 and c(x, t) = {0  for x ∈ Ωu

1  for x ∈ Ωo

DLip ∇cLip(x, t) ⋅ ⃗n = DCor ∇cCor(x, t) ⋅ ⃗n
KCor/LipcLip(x, t) |n− = cCor(x, t) |n+
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Simulation Results T=T∞/3

™ = 10-4 ™ = 10-6
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Simulation Results T=2T∞/3

™ = 10-4 ™ = 10-6
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Simulation Results T=T∞

™ = 10-4 ™ = 10-6
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Characterization
• Flux across upper boundary

• Mass transported across upper boundary



Gabriel Wittum
AMCS, CEMSE, KAUST

G-CSC,University of Frankfurt

Experiment (schematic)
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Characterization Lag Time
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Analytical Solutions

1.  ™ = 1 (homogenuous membrane): Tlag = 20 sec 

2.  ™ = 0 (impermeable corneocytes): Tlag ≈ 1 h
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Computed Lag Times

Kcor/lip = 1
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Computed Lag Times

Kcor/lip = 1measured
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Tlag vs. ™ and Kcor/lip
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Tlag vs. ™ and ω



Gabriel Wittum
ECRC, CEMSE, KAUST

G-CSC,University of Frankfurt

Simulation: 2D Brick Model

• Lieckfeldt, R., Lee, G, Heisig, M., Wittum, G.: Diffusant 
concentration profiles within cornecytes and lipid phase 
of stratum corneum. Proceed. Internat. Symp. Control. Rel. 
Bioact. Mater., 20 (1993)

• Intra cellular pathways matter
• Nearly optimum barrier design,
• Robust w.r.t. insensitivity against shift and corneocyte 

permeability.
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Simulation: 2D Brick Model

• Lieckfeldt, R., Lee, G, Heisig, M., Wittum, G.: Diffusant 
concentration profiles within cornecytes and lipid phase 
of stratumcorneum. Proceed. Internat. Symp. Control. Rel. 
Bioact. Mater., 20 (1993)

• Intra cellular pathways matter 
• Nearly optimum barrier design,
• Robust w.r.t. insensitivity against shift and corneocyte 

permeability.
• Experimentally confirmed in 2003! 

Langer et al 2003
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Tetrakaidekahedra based model

Idealized  
Stratum Corneum

Transport equation  
(w/ diffusion and partition coefficients)

Process
&

=

Corneocyte sponge effect

Morphology

Effect

A. Nägel
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Weak Scaling UG4
• Robust GMG solver for skin problem 

(transdermal drug delivery)
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Weak Scaling UG4
• Robust GMG solver for transdermal 

drug delivery problem  (JuQueen) 
> 109 unknowns
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A. Nägel
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Skin Problem: TKD
• Base solver UG4: Parallel adaptive multigrid  

- acceleration from 10   to 10   by adaptivity2 6

Sebastian Reiter
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Parallel Adaptivity
• Base solver UG4: Parallel adaptive mg 

- acceleration by 512 by adaptivity

• Importance of adaptivity increases with problem size!
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Resolution [nm]  
uniform  25,91 
adaptive  2,70

uniform L13: 33,554,432 cores
adaptive L13: 65536 cores 
factor 512 (99.5%) in 
computational resources and 
power consumpt.

A. Nägel, S. Reiter, A. Vogel
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Parallel Adaptivity
• Key strategy for

• saving CPU time (99.5%),
• saving power (99.5%),
• improving accuracy  

(uniform needs 3 more levels to reach same error)

• Higher order effect without additional smoothness

• Importance of adaptivity increases with problem size!

• Multi-scale modeling necessary.
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Thank you!


