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• Recursive least-square (RLS) algorithm → frequently used in system identification problems

→ the reference (desired) signal:

𝑑 𝑛 = 𝐫𝑇𝐱 𝑛 + 𝑤(𝑛) 𝐫 = unknown system (length 𝐿)

𝐱 𝑛 = [𝑥 𝑛 𝑥 𝑛 − 1 … 𝑥(𝑛 − 𝐿 + 1)]𝑇

𝑤 𝑛 = system noise

• In this work → identification of bilinear forms

→ the reference (desired) signal:

𝑑 𝑛 = 𝐡𝑇𝐗 𝑛 𝐠 + 𝑤(𝑛) 𝐡, 𝐠 = unknown systems (length 𝐿 𝑎𝑛𝑑 𝑀)

𝐗 𝑛 = [𝐱1 𝑛 𝐱2 𝑛 … 𝐱𝑀(𝑛)]

𝐱𝑚 𝑛 = [𝑥𝑚 𝑛 𝑥𝑚 𝑛 − 1 … 𝑥𝑚(𝑛 − 𝐿 + 1)] 𝑇

• Target

→ Variable-Regularized RLS algorithms for the identification of bilinear forms

[Benesty et al., IEEE Signal Processing Letters, May 2017]
[Paleologu et al., Digital Signal Processing, April 2018]
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d(n) = hTX(n)g + w(n) 

Model

Bilinear form
(with respect to the impulse responses)

Examples of applications:
• multi-channel equalization 
• nonlinear acoustic echo cancellation 

𝐟 = 𝐠⊗ 𝐡

෤𝐱(𝑛) = vec 𝐗(𝑛) =

𝐱1(𝑛)
𝐱2(𝑛)
⋮

𝐱𝑀(𝑛)

Equivalent model

→ Kronecker product

f  → length ML
h → length L
g → length M

d(n) = fT෤𝐱(n) + w(n) 

[Gesbert and Duhamel, IEEE WSSAP, 1996]
[Huang et al., IEEE ICASSP, 2017]
[Stenger and Kellerman, Signal Processing, Sept. 2000]
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𝐑 ො𝐠 𝑛 መ𝐡 𝑛 = 𝐩ො𝐠 𝑛

𝐑መ𝐡 𝑛 ො𝐠 𝑛 = 𝐩መ𝐡 𝑛

The normal equations (LS criterion):

Forgetting factors

𝜆෡h (0 ≪ 𝜆෡h < 1)

and

𝜆ොg (0 ≪ 𝜆ොg < 1)

, where

෤𝐱ො𝐠 𝑛 = [ො𝐠(𝑛 − 1)⨂𝐈𝐿]
𝑇 ෤𝐱(𝑛)

෤𝐱መ𝐡 𝑛 = [𝐈𝑀⨂መ𝐡(𝑛 − 1)]𝑇 ෤𝐱(𝑛)𝐑 ො𝐠 𝑛 =𝜆෡h𝐑 ො𝐠 𝑛 − 1 +෤𝐱ොg 𝑛 ෤𝐱ො𝐠
𝑇 𝑛

𝐑መ𝐡 𝑛 =𝜆ොg𝐑መ𝐡 𝑛 − 1 +෤𝐱መ𝐡 𝑛 ෤𝐱መ𝐡
𝑇 𝑛

𝐩ො𝐠 𝑛 =𝜆෡h𝐩ො𝐠 𝑛 − 1 +෤𝐱ොg 𝑛 d 𝑛

𝐩መ𝐡 𝑛 =𝜆ොg𝐩መ𝐡 𝑛 − 1 +෤𝐱መ𝐡(𝑛)d 𝑛

, with

RLS Algorithm for Bilinear Forms

Matrix inversion lemma:                             RLS-BF                𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑶(𝑳𝟐 +𝑴𝟐)
𝐑 ො𝐠
−𝟏 𝒏

𝐑መ𝐡
−𝟏 𝒏

Auxiliary normal equations solvable with the Dichotomous Coordinate Descent 
algorithm: RLS-DCD-BF
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RLS-DCD Algorithm for Bilinear Forms

RLS-DCD-BF-v1:

• ෤𝐱ොg 𝑛 time-shift property in the 

steady-state: ො𝐠 𝑛 ≈ ො𝐠 𝑛 − 1

• 𝐑ො𝐠 𝑛 symmetric 

𝐑ො𝐠
1

𝑛 =𝜆෡h𝐑ො𝐠
1

𝑛 − 1 +෤𝐱ොg 𝑛 ෤𝐱ො𝐠
1

𝑛

• L − 1 × L − 1 lower−right block of 𝐑 ො𝐠 𝐧 ≈

L − 1 × L − 1 upper−left block of 𝐑 ො𝐠 𝐧−𝟏

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴𝟐)

RLS-DCD-BF-v2:

• ෤𝐱ොg 𝑛 and ෤𝐱෡h 𝑛 are independent 

and have the same power

• same 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑓𝑜𝑟 𝐑መ𝐡 n

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴)



𝐽ොg መ𝐡 𝑛 =෍

𝑖=1

𝑛

𝜆෡h
𝑛−𝑖 [𝑑 𝑖 − መ𝐡𝑇(𝑛)෤𝐱ොg(𝑖)]

2+𝛿መ𝐡
መ𝐡(𝑛)

2

Regularized RLS Algorithm for Bilinear Forms
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𝐽෡h ො𝐠 𝑛 =෍

𝑖=1

𝑛

𝜆ොg
𝑛−𝑖 [𝑑 𝑖 − ො𝐠𝑇(𝑛)෤𝐱෡h(𝑖)]

2+𝛿ො𝐠 ො𝐠(𝑛) 2

The cost functions (LS criterion):

Forgetting factors Regularization  parameters

, where

𝜆෡h (0 ≪ 𝜆෡h < 1)

𝜆ොg (0 ≪ 𝜆ොg < 1)

The updates:

መ𝐡 𝑛 = መ𝐡 𝑛 − 1 + 𝐑 ො𝐠 𝑛 + 𝛿መ𝐡𝐈𝐿
−1
෤𝐱ො𝐠 𝑛 𝑒 𝑛

ො𝐠 𝑛 = ො𝐠 𝑛 − 1 + 𝐑መ𝐡 𝑛 + 𝛿ො𝐠𝐈𝑀
−1
෤𝐱መ𝐡 𝑛 𝑒 𝑛

and

, where

෤𝐱ො𝐠 𝑛 = [ො𝐠(𝑛 − 1)⨂𝐈𝐿]
𝑇 ෤𝐱(𝑛)

෤𝐱መ𝐡 𝑛 = [𝐈𝑀⨂መ𝐡(𝑛 − 1)]𝑇 ෤𝐱(𝑛)

𝐑 ො𝐠 𝑛 =𝜆෡h𝐑 ො𝐠 𝑛 − 1 +෤𝐱ොg(𝑛)෤𝐱ො𝐠
𝑇(𝑛)

𝐑መ𝐡 𝑛 =𝜆ොg𝐑መ𝐡 𝑛 − 1 +෤𝐱መ𝐡(𝑛)෤𝐱መ𝐡
𝑇(𝑛)
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The update equations can be rewritten as :

𝐏ො𝐠 𝑛 = 𝐈𝐿 − 𝐑 ො𝐠 𝑛 + 𝛿መ𝐡𝐈𝐿
−1
෤𝐱ො𝐠(𝑛)෤𝐱ො𝐠

𝑇(𝑛)

መ𝐡 𝑛 = 𝐏ො𝐠 𝑛 መ𝐡 𝑛 − 1 + ሚ𝐡 𝑛

ො𝐠 𝑛 = 𝐏መ𝐡 𝑛 ො𝐠 𝑛 − 1 + ෤𝐠(𝑛)

ሚ𝐡(𝑛) = 𝐑 ො𝐠 𝑛 + 𝛿መ𝐡𝐈𝐿
−1
෤𝐱ොg 𝑛 𝑑(𝑛)

෤𝐠(𝑛) = 𝐑መ𝐡 𝑛 + 𝛿ො𝐠𝐈𝑀
−1
෤𝐱መ𝐡 𝑛 𝑑(𝑛)

where
𝐏መ𝐡 𝑛 = 𝐈𝑀 − 𝐑መ𝐡 𝑛 + 𝛿ො𝐠𝐈𝑀

−1
෤𝐱መ𝐡(𝑛)෤𝐱መ𝐡

𝑇(𝑛)

The correction components of the algorithm

• Let us define

• We could find 𝛿መ𝐡 and 𝛿ො𝐠 in such a way that:

ǁ𝑒ො𝐠(𝑛) = 𝑑 𝑛 − ሚ𝐡𝑇(𝑛)෤𝐱ො𝐠(𝑛)

ǁ𝑒መ𝐡(𝑛) = 𝑑 𝑛 − ෤𝐠𝑇(𝑛)෤𝐱መ𝐡(𝑛)

• In the context of real-world system identification problems, the main purpose is to recover
the noise signal from the error of the adaptive filter.

𝐸 ǁ𝑒ො𝐠
2(𝑛) = 𝐸 ǁ𝑒መ𝐡

2(𝑛) = 𝜎𝑤
2
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The quadratic equations:

𝛿መ𝐡
2 −

2𝛿መ𝐡𝐿𝜎𝑥
2𝜈ො𝐠

SNR
−

𝐿𝜎𝑥
2𝜈ො𝐠

2

SNR
= 0

𝛿ො𝐠
2 −

2𝛿ො𝐠𝑀𝜎𝑥
2𝜈መ𝐡

SNR
−

𝑀𝜎𝑥
2𝜈መ𝐡

2

SNR
= 0

, where

• The obvious solutions of these equations
lead to the regularization parameters:

𝛿መ𝐡 =
𝐿𝐸 ො𝐠(𝑛 − 1) 𝟐 1 + 1 + SNR

SNR
𝜎𝒙
2

𝛿ො𝐠 =
𝑀𝐸 መ𝐡(𝑛 − 1)

𝟐
1 + 1 + SNR

SNR
𝜎𝒙
2

𝜈ො𝐠 = 𝐸 ො𝐠(𝑛 − 1) 2

𝜈መ𝐡 = 𝐸 መ𝐡(𝑛 − 1)
2

• Let us assume that the adaptive filter has converged to a certain degree: 𝜎𝑦
2 ≈ 𝜎ො𝑦

2

• We can express the signal model in terms of power estimates: 𝜎𝑑
2 = 𝜎𝑦

2 + 𝜎𝑤
2

Regularized RLS Algorithm for Bilinear Forms
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• The power estimates can be evaluated in a recursive manner as:

ො𝜎𝑑
2 𝑛 = 𝛾 ො𝜎𝑑

2 𝑛 − 1 + 1 − 𝛾 𝑑2 𝑛

ො𝜎ො𝑦
2 𝑛 = 𝛾 ො𝜎ො𝑦

2 𝑛 − 1 + (1 − 𝛾)ො𝑦2(𝑛)
෢SNR 𝑛 =

ො𝜎ො𝑦
2(𝑛)

ො𝜎𝑑
2 𝑛 − ො𝜎ො𝑦

2(𝑛)

• The variable regularization parameters results in:

𝛿መ𝐡(𝑛) = 𝐿 ො𝐠 𝑛 − 1 2𝑠(𝑛)𝜎𝒙
2

𝛿ො𝐠(𝑛) = 𝑀 መ𝐡(𝑛 − 1)
2
𝑠(𝑛)𝜎𝒙

2
𝑠 𝑛 =

1 + 1 + ෢SNR 𝑛

෢SNR 𝑛
, where

0 ≪ 𝛾 < 1

𝐑 ො𝐠 𝑛 መ𝐡 𝑛 = 𝐩ො𝐠 𝑛

𝐑መ𝐡 𝑛 ො𝐠 𝑛 = 𝐩መ𝐡 𝑛
, where

𝐑 ො𝐠 𝑛 = ෡𝐑 ො𝐠 𝑛 +𝛿መ𝐡 𝑛 𝐈𝐿

𝐑መ𝐡 𝑛 = ෡𝐑መ𝐡 𝑛 +𝛿ො𝐠 𝑛 𝐈𝑀

• The problem can be interpreted again in terms of solving the normal equations:

VR-RLS-BF

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑶(𝑳𝟐 +𝑴𝟐)

Auxiliary normal equations solvable with the Dichotomous Coordinate Descent 
algorithm: VR-RLS-DCD-BF

and 𝐩ො𝐠 𝑛 and 𝐩መ𝐡 𝑛 as for RLS-BF
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VR-RLS-DCD-BF-v1:

• ෤𝐱ොg 𝑛 time-shift property in the 

steady-state: ො𝐠 𝑛 ≈ ො𝐠 𝑛 − 1

• 𝐑ො𝐠 𝑛 symmetric 

𝐑ො𝐠
1

𝑛 =𝜆෡h𝐑ො𝐠
1

𝑛 − 1 +෤𝐱ොg 𝑛 ෤𝐱ො𝐠
1

𝑛

• L − 1 × L − 1 lower−right block of 𝐑 ො𝐠 𝐧 ≈

L − 1 × L − 1 upper−left block of 𝐑 ො𝐠 𝐧−𝟏

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴𝟐)

VR-RLS-DCD-BF-v2:

• ෤𝐱ොg 𝑛 and ෤𝐱෡h 𝑛 are independent 

and have the same power

• same 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑓𝑜𝑟 𝐑መ𝐡 n

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴)

Variable-Regularized RLS Algorithm for Bilinear Forms
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• Conditions:

→ system identification, L = 64, M = 8

→ h, g – randomly generated (Gaussian distribution)

→ input signals – AR(1) processes; each one is 
generated by filtering a white Gaussian noise 
through a first-order system with the transfer 
function Τ1 1 − 0.8𝑧−1

→ only one successful DCD iteration used

→ additive noise w(n) – WGN

→ 𝜆෡h = 𝜆ොg = 1 − Τ1 2𝑀𝐿

→ measure of performance: 

• Algorithms:

→ RLS-DCD-BF

→ VR-RLS-BF

→ VR-RLS-DCD-BF

NPM 𝐟, መ𝐟(𝑛) = 1 −
𝐟𝑇 መ𝐟 𝑛

𝐟 መ𝐟 𝑛

2

dB
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Simulation Results

Figure 1. Comparison of the VR-based algorithms in terms of 

(a) NPM 𝐡, መ𝐡(𝑛) and (b) NPM 𝐠, ො𝐠(𝑛) . The system changes after 

5 seconds. The input signals are AR 1 processes and SNR = 10 dB.
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Simulation Results

Figure 2. Comparison of the VR-based algorithms in terms of 

(a) NPM 𝐡, መ𝐡(𝑛) and (b) NPM 𝐠, ො𝐠(𝑛) . The system changes after 

15 seconds. The input signals are speech sequences and SNR = 0 dB.

Figure 3. Comparison of the VR-RLS-BF, VR-RLS-DCD-BF-v1, 

and RLSDCD-v1 algorithms in terms of (a) NPM 𝐡, መ𝐡(𝑛) and 

(b) NPM 𝐠, ො𝐠(𝑛) . The SNR decreases from system 0 dB to −25 dB
between times 12 and 18 seconds.



 We focused on the regularization terms of the RLS algorithm tailored for the identification 
of bilinear forms.

 The bilinear form was defined with respect to the impulse responses. 

 We have presented a method to find the regularization parameters depending on the SNR.

 Using a proper estimation of the SNR, a variable-regularized solution was proposed – VR-
RLS-BF, together with two low-complexity versions based on the DCD method.

 Simulations have shown that the VR-based algorithms outperform their non-regularized 
counterpart, mainly in terms of robustness against SNR variations.

 Future works will focus on the extension of these solutions in case of multilinear forms, by 
exploiting tensor-based adaptive algorithms. In this context, the decomposition methods 
can be combined with low-rank approximations, aiming the identification of more general 
forms of impulse responses.

Conclusions

16
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