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• Recursive least-square (RLS) algorithm → frequently used in system identification problems

→ the reference (desired) signal:

𝑑 𝑛 = 𝐫𝑇𝐱 𝑛 + 𝑤(𝑛) 𝐫 = unknown system (length 𝐿)

𝐱 𝑛 = [𝑥 𝑛 𝑥 𝑛 − 1 … 𝑥(𝑛 − 𝐿 + 1)]𝑇

𝑤 𝑛 = system noise

• In this work → identification of bilinear forms

→ the reference (desired) signal:

𝑑 𝑛 = 𝐡𝑇𝐗 𝑛 𝐠 + 𝑤(𝑛) 𝐡, 𝐠 = unknown systems (length 𝐿 𝑎𝑛𝑑 𝑀)

𝐗 𝑛 = [𝐱1 𝑛 𝐱2 𝑛 … 𝐱𝑀(𝑛)]

𝐱𝑚 𝑛 = [𝑥𝑚 𝑛 𝑥𝑚 𝑛 − 1 … 𝑥𝑚(𝑛 − 𝐿 + 1)] 𝑇

• Target

→ Variable-Regularized RLS algorithms for the identification of bilinear forms

[Benesty et al., IEEE Signal Processing Letters, May 2017]
[Paleologu et al., Digital Signal Processing, April 2018]
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d(n) = hTX(n)g + w(n) 

Model

Bilinear form
(with respect to the impulse responses)

Examples of applications:
• multi-channel equalization 
• nonlinear acoustic echo cancellation 

𝐟 = 𝐠⊗ 𝐡

𝐱(𝑛) = vec 𝐗(𝑛) =

𝐱1(𝑛)
𝐱2(𝑛)
⋮

𝐱𝑀(𝑛)

Equivalent model

→ Kronecker product

f  → length ML
h → length L
g → length M

d(n) = fT𝐱(n) + w(n) 

[Gesbert and Duhamel, IEEE WSSAP, 1996]
[Huang et al., IEEE ICASSP, 2017]
[Stenger and Kellerman, Signal Processing, Sept. 2000]
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𝐑 ො𝐠 𝑛 መ𝐡 𝑛 = 𝐩ො𝐠 𝑛

𝐑መ𝐡 𝑛 ො𝐠 𝑛 = 𝐩መ𝐡 𝑛

The normal equations (LS criterion):

Forgetting factors

𝜆h (0 ≪ 𝜆h < 1)

and

𝜆ොg (0 ≪ 𝜆ොg < 1)

, where

𝐱ො𝐠 𝑛 = [ො𝐠(𝑛 − 1)⨂𝐈𝐿]
𝑇 𝐱(𝑛)

𝐱መ𝐡 𝑛 = [𝐈𝑀⨂መ𝐡(𝑛 − 1)]𝑇 𝐱(𝑛)𝐑 ො𝐠 𝑛 =𝜆h𝐑 ො𝐠 𝑛 − 1 +𝐱ොg 𝑛 𝐱ො𝐠
𝑇 𝑛

𝐑መ𝐡 𝑛 =𝜆ොg𝐑መ𝐡 𝑛 − 1 +𝐱መ𝐡 𝑛 𝐱መ𝐡
𝑇 𝑛

𝐩ො𝐠 𝑛 =𝜆h𝐩ො𝐠 𝑛 − 1 +𝐱ොg 𝑛 d 𝑛

𝐩መ𝐡 𝑛 =𝜆ොg𝐩መ𝐡 𝑛 − 1 +𝐱መ𝐡(𝑛)d 𝑛

, with

RLS Algorithm for Bilinear Forms

Matrix inversion lemma:                             RLS-BF                𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑶(𝑳𝟐 +𝑴𝟐)
𝐑 ො𝐠
−𝟏 𝒏

𝐑መ𝐡
−𝟏 𝒏

Auxiliary normal equations solvable with the Dichotomous Coordinate Descent 
algorithm: RLS-DCD-BF
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RLS-DCD Algorithm for Bilinear Forms

RLS-DCD-BF-v1:

• 𝐱ොg 𝑛 time-shift property in the 

steady-state: ො𝐠 𝑛 ≈ ො𝐠 𝑛 − 1

• 𝐑ො𝐠 𝑛 symmetric 

𝐑ො𝐠
1

𝑛 =𝜆h𝐑ො𝐠
1

𝑛 − 1 +𝐱ොg 𝑛 𝐱ො𝐠
1

𝑛

• L − 1 × L − 1 lower−right block of 𝐑 ො𝐠 𝐧 ≈

L − 1 × L − 1 upper−left block of 𝐑 ො𝐠 𝐧−𝟏

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴𝟐)

RLS-DCD-BF-v2:

• 𝐱ොg 𝑛 and 𝐱h 𝑛 are independent 

and have the same power

• same 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑓𝑜𝑟 𝐑መ𝐡 n

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴)



𝐽ොg መ𝐡 𝑛 =

𝑖=1

𝑛

𝜆h
𝑛−𝑖 [𝑑 𝑖 − መ𝐡𝑇(𝑛)𝐱ොg(𝑖)]

2+𝛿መ𝐡
መ𝐡(𝑛)

2

Regularized RLS Algorithm for Bilinear Forms
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𝐽h ො𝐠 𝑛 =

𝑖=1

𝑛

𝜆ොg
𝑛−𝑖 [𝑑 𝑖 − ො𝐠𝑇(𝑛)𝐱h(𝑖)]

2+𝛿ො𝐠 ො𝐠(𝑛) 2

The cost functions (LS criterion):

Forgetting factors Regularization  parameters

, where

𝜆h (0 ≪ 𝜆h < 1)

𝜆ොg (0 ≪ 𝜆ොg < 1)

The updates:

መ𝐡 𝑛 = መ𝐡 𝑛 − 1 + 𝐑 ො𝐠 𝑛 + 𝛿መ𝐡𝐈𝐿
−1
𝐱ො𝐠 𝑛 𝑒 𝑛

ො𝐠 𝑛 = ො𝐠 𝑛 − 1 + 𝐑መ𝐡 𝑛 + 𝛿ො𝐠𝐈𝑀
−1
𝐱መ𝐡 𝑛 𝑒 𝑛

and

, where

𝐱ො𝐠 𝑛 = [ො𝐠(𝑛 − 1)⨂𝐈𝐿]
𝑇 𝐱(𝑛)

𝐱መ𝐡 𝑛 = [𝐈𝑀⨂መ𝐡(𝑛 − 1)]𝑇 𝐱(𝑛)

𝐑 ො𝐠 𝑛 =𝜆h𝐑 ො𝐠 𝑛 − 1 +𝐱ොg(𝑛)𝐱ො𝐠
𝑇(𝑛)

𝐑መ𝐡 𝑛 =𝜆ොg𝐑መ𝐡 𝑛 − 1 +𝐱መ𝐡(𝑛)𝐱መ𝐡
𝑇(𝑛)
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The update equations can be rewritten as :

𝐏ො𝐠 𝑛 = 𝐈𝐿 − 𝐑 ො𝐠 𝑛 + 𝛿መ𝐡𝐈𝐿
−1
𝐱ො𝐠(𝑛)𝐱ො𝐠

𝑇(𝑛)

መ𝐡 𝑛 = 𝐏ො𝐠 𝑛 መ𝐡 𝑛 − 1 + ሚ𝐡 𝑛

ො𝐠 𝑛 = 𝐏መ𝐡 𝑛 ො𝐠 𝑛 − 1 + 𝐠(𝑛)

ሚ𝐡(𝑛) = 𝐑 ො𝐠 𝑛 + 𝛿መ𝐡𝐈𝐿
−1
𝐱ොg 𝑛 𝑑(𝑛)

𝐠(𝑛) = 𝐑መ𝐡 𝑛 + 𝛿ො𝐠𝐈𝑀
−1
𝐱መ𝐡 𝑛 𝑑(𝑛)

where
𝐏መ𝐡 𝑛 = 𝐈𝑀 − 𝐑መ𝐡 𝑛 + 𝛿ො𝐠𝐈𝑀

−1
𝐱መ𝐡(𝑛)𝐱መ𝐡

𝑇(𝑛)

The correction components of the algorithm

• Let us define

• We could find 𝛿መ𝐡 and 𝛿ො𝐠 in such a way that:

ǁ𝑒ො𝐠(𝑛) = 𝑑 𝑛 − ሚ𝐡𝑇(𝑛)𝐱ො𝐠(𝑛)

ǁ𝑒መ𝐡(𝑛) = 𝑑 𝑛 − 𝐠𝑇(𝑛)𝐱መ𝐡(𝑛)

• In the context of real-world system identification problems, the main purpose is to recover
the noise signal from the error of the adaptive filter.

𝐸 ǁ𝑒ො𝐠
2(𝑛) = 𝐸 ǁ𝑒መ𝐡

2(𝑛) = 𝜎𝑤
2
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The quadratic equations:

𝛿መ𝐡
2 −

2𝛿መ𝐡𝐿𝜎𝑥
2𝜈ො𝐠

SNR
−

𝐿𝜎𝑥
2𝜈ො𝐠

2

SNR
= 0

𝛿ො𝐠
2 −

2𝛿ො𝐠𝑀𝜎𝑥
2𝜈መ𝐡

SNR
−

𝑀𝜎𝑥
2𝜈መ𝐡

2

SNR
= 0

, where

• The obvious solutions of these equations
lead to the regularization parameters:

𝛿መ𝐡 =
𝐿𝐸 ො𝐠(𝑛 − 1) 𝟐 1 + 1 + SNR

SNR
𝜎𝒙
2

𝛿ො𝐠 =
𝑀𝐸 መ𝐡(𝑛 − 1)

𝟐
1 + 1 + SNR

SNR
𝜎𝒙
2

𝜈ො𝐠 = 𝐸 ො𝐠(𝑛 − 1) 2

𝜈መ𝐡 = 𝐸 መ𝐡(𝑛 − 1)
2

• Let us assume that the adaptive filter has converged to a certain degree: 𝜎𝑦
2 ≈ 𝜎ො𝑦

2

• We can express the signal model in terms of power estimates: 𝜎𝑑
2 = 𝜎𝑦

2 + 𝜎𝑤
2

Regularized RLS Algorithm for Bilinear Forms
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• The power estimates can be evaluated in a recursive manner as:

ො𝜎𝑑
2 𝑛 = 𝛾 ො𝜎𝑑

2 𝑛 − 1 + 1 − 𝛾 𝑑2 𝑛

ො𝜎ො𝑦
2 𝑛 = 𝛾 ො𝜎ො𝑦

2 𝑛 − 1 + (1 − 𝛾)ො𝑦2(𝑛)
SNR 𝑛 =

ො𝜎ො𝑦
2(𝑛)

ො𝜎𝑑
2 𝑛 − ො𝜎ො𝑦

2(𝑛)

• The variable regularization parameters results in:

𝛿መ𝐡(𝑛) = 𝐿 ො𝐠 𝑛 − 1 2𝑠(𝑛)𝜎𝒙
2

𝛿ො𝐠(𝑛) = 𝑀 መ𝐡(𝑛 − 1)
2
𝑠(𝑛)𝜎𝒙

2
𝑠 𝑛 =

1 + 1 + SNR 𝑛

SNR 𝑛
, where

0 ≪ 𝛾 < 1

𝐑 ො𝐠 𝑛 መ𝐡 𝑛 = 𝐩ො𝐠 𝑛

𝐑መ𝐡 𝑛 ො𝐠 𝑛 = 𝐩መ𝐡 𝑛
, where

𝐑 ො𝐠 𝑛 = 𝐑 ො𝐠 𝑛 +𝛿መ𝐡 𝑛 𝐈𝐿

𝐑መ𝐡 𝑛 = 𝐑መ𝐡 𝑛 +𝛿ො𝐠 𝑛 𝐈𝑀

• The problem can be interpreted again in terms of solving the normal equations:

VR-RLS-BF

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑶(𝑳𝟐 +𝑴𝟐)

Auxiliary normal equations solvable with the Dichotomous Coordinate Descent 
algorithm: VR-RLS-DCD-BF

and 𝐩ො𝐠 𝑛 and 𝐩መ𝐡 𝑛 as for RLS-BF
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VR-RLS-DCD-BF-v1:

• 𝐱ොg 𝑛 time-shift property in the 

steady-state: ො𝐠 𝑛 ≈ ො𝐠 𝑛 − 1

• 𝐑ො𝐠 𝑛 symmetric 

𝐑ො𝐠
1

𝑛 =𝜆h𝐑ො𝐠
1

𝑛 − 1 +𝐱ොg 𝑛 𝐱ො𝐠
1

𝑛

• L − 1 × L − 1 lower−right block of 𝐑 ො𝐠 𝐧 ≈

L − 1 × L − 1 upper−left block of 𝐑 ො𝐠 𝐧−𝟏

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴𝟐)

VR-RLS-DCD-BF-v2:

• 𝐱ොg 𝑛 and 𝐱h 𝑛 are independent 

and have the same power

• same 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑓𝑜𝑟 𝐑መ𝐡 n

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦:  𝑶(𝑳 +𝑴)

Variable-Regularized RLS Algorithm for Bilinear Forms
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• Conditions:

→ system identification, L = 64, M = 8

→ h, g – randomly generated (Gaussian distribution)

→ input signals – AR(1) processes; each one is 
generated by filtering a white Gaussian noise 
through a first-order system with the transfer 
function Τ1 1 − 0.8𝑧−1

→ only one successful DCD iteration used

→ additive noise w(n) – WGN

→ 𝜆h = 𝜆ොg = 1 − Τ1 2𝑀𝐿

→ measure of performance: 

• Algorithms:

→ RLS-DCD-BF

→ VR-RLS-BF

→ VR-RLS-DCD-BF

NPM 𝐟, መ𝐟(𝑛) = 1 −
𝐟𝑇 መ𝐟 𝑛

𝐟 መ𝐟 𝑛

2

dB
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Simulation Results

Figure 1. Comparison of the VR-based algorithms in terms of 

(a) NPM 𝐡, መ𝐡(𝑛) and (b) NPM 𝐠, ො𝐠(𝑛) . The system changes after 

5 seconds. The input signals are AR 1 processes and SNR = 10 dB.
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Simulation Results

Figure 2. Comparison of the VR-based algorithms in terms of 

(a) NPM 𝐡, መ𝐡(𝑛) and (b) NPM 𝐠, ො𝐠(𝑛) . The system changes after 

15 seconds. The input signals are speech sequences and SNR = 0 dB.

Figure 3. Comparison of the VR-RLS-BF, VR-RLS-DCD-BF-v1, 

and RLSDCD-v1 algorithms in terms of (a) NPM 𝐡, መ𝐡(𝑛) and 

(b) NPM 𝐠, ො𝐠(𝑛) . The SNR decreases from system 0 dB to −25 dB
between times 12 and 18 seconds.



 We focused on the regularization terms of the RLS algorithm tailored for the identification 
of bilinear forms.

 The bilinear form was defined with respect to the impulse responses. 

 We have presented a method to find the regularization parameters depending on the SNR.

 Using a proper estimation of the SNR, a variable-regularized solution was proposed – VR-
RLS-BF, together with two low-complexity versions based on the DCD method.

 Simulations have shown that the VR-based algorithms outperform their non-regularized 
counterpart, mainly in terms of robustness against SNR variations.

 Future works will focus on the extension of these solutions in case of multilinear forms, by 
exploiting tensor-based adaptive algorithms. In this context, the decomposition methods 
can be combined with low-rank approximations, aiming the identification of more general 
forms of impulse responses.

Conclusions

16



17

Thank you for 
your attention!

This work was supported by a grant of the Romanian Ministry
of Education and Research, CNCS-UEFISCDI, project number PN-
III-P1-1.1-TE-2019-0529, within PNCDI III


