
Ana Petrovska, Malte Neuss, Sebastian Bergemann, Martin Büchner, M. Ansab Shohab

Smart Self-Adaptive Cyber-Physical Systems: How can
Exploration and Learning Improve Performance in a
Partially Observable Multi-Agent Context?

Technical University of Munich, Department of Informatics

ana.petrovska@tum.de

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

2

About presenter: Ana Petrovska

Ana Petrovska since 2017 is a Ph.D. candidate at the Chair of Software and Systems
Engineering led by Prof. Alexander Pretschner at the Technical University of Munich,
Department of Informatics. Her research interest focuses in understanding and
defining self-adaptivity, self-adaptive cyber-physical systems operating in dynamic
environments, and system reasoning under uncertainties.

ana.petrovska@tum.de

https://www.in.tum.de/i04/petrovska/

Munich, Germany

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

3

Motivation
 Modern complex and dynamic systems as Cyber-Physical

Systems (CPSs):

 are composed of many interacting and interconnected

components

 inherit all the complexities of modern large-scale

distributed systems [1]

 deliver complex functionality [2]

 cooperate and collaborate with other CPSs.

 A common approach to deal with run-time changes and

uncertainties is to make the CPSs self-adaptive.

 MAPE-K [6, 7, 8]

 The Knowledge component comprises models of the

CPS(s) and the context where they are operating.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

4

Motivation cont.
 Additionally, modern CPSs:

 operate in continually changing, uncertain, and unanticipated environments (operational

context) [3, 4, 5]

 additionally, CPSs often operate in:

 partially observable context

 multiagent

 stochastic

 sequential

 dynamic

 continuous, and

 unknown context*.

 abbreviated, PMSSDCU context.

* Unknown context does not refer to the context itself, but it refers to the knowledge that the CPSs have about the
laws of physics of the context [6].

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

5

Identified problems

The prior works in the self-adaptive systems domain provide approaches where

1) the adaptation logic is predetermined and its structure does not change over time, e.g., [7],
or

2) the operational context in which the self-adaptive CPSs operate is predetermined and static,
and does not change during run-time, e.g., [8].

Having an adaptation logic that is predefined at the design of the system and
does not improve over time, cannot provide adequate and accurate
adaptation, when the self-adaptive systems and the context in which they
operating are dynamic and changing in an unpredictable manner during run-
time.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

6

Paper contribution

 We tackle this issue by proposing a methodology for building adaptation logic for self-adaptive
CPSs that operate in a PMSSDCU context. The context changes in a way that cannot be predicted
during the design of the system.

 We focus on building a self-adaptive system, for multi-agent CPSs, with shared adaptation logic,
in which the knowledge in the adaptation is continuously updated at run-time.

 In our work, the adaptation logic does not only adapts the behaviour of the systems (the
managed elements), but it changes its own knowledge during run-time.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

7

Reference problem: Cleaning robots

Setting:
 Dirt appears perpetually in different places at different points in time in the room

 Unknown locations and frequency patterns
 One or more ground, mobile robots deployed in a room

 Discover new dirt tasks, and later attain the tasks
 Adaptive Monte Carlo Localization (AMCL) for navigation and localization

Mission goal:
 Keep the room clean by removing the dirt

Adaptation goals:
1. Minimizing the time needed for the room to be cleaned and be kept clean
2. Increasing its fault-tolerance by avoiding failures (e.g. collision with other robots) and

deadlocks.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

8

Reference problem: In a perfect world…
 Single robot

 Perfect sensors

 Static obstacles

 Predefined number of
dirt tasks

 Limitless sensor range –
complete overview of
the room

 Sensors do not
introduce any
uncertainties

 Robot never fails

 Perfect AMCL
However, this does not resemble reality!

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

9

Reference problem: The problems are…

1.

Sensors are not perfect:
they have a partial

observation range, and
introduce different run-
time uncertainties, e.g.,

sensor imprecision, noise,
ambiguity, inconsistency
and inaccuracy, and even

sensor failures [9]

2.

Continuous appearance of
new tasks with unknown

patterns: The run-time
decisions on how the new
tasks are assigned to the

robots, and what path the
robots take to reach to

those tasks can
significantly influence the
system adaptation goals.

3.

Navigation and localization do
not work perfectly: when

multiple agents need to localize
themselves and navigate in a

room, the other agents deployed
in their relative proximity

indirectly influence their actions.
This can potentially lead to

different AMCL localization and
navigation issues, which can later

result as sources of failures.

caused by changing

context

caused by internal
system changes

These changes are triggers for system self-adaptation.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

10

Methodology

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

11

Methodology

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

12

Tasks detection, knowledge representation and
context models

 Task detection: a local phase, decentralized and distributed in every CPSs, i.e., robot.
 Every agent independently detects the newly appearing dirt tasks, with a confidence
value of 10% upon detection.
 The dirt tasks are published as goals, for all the robots, once the confidence value
exceeds 90%.

 The knowledge representation via context models in the adaptation logic: global phase, shared
among all the CPSs, i.e., the robots.

 It is the best possible representation of the actual context, i.e., the run-time state of the
room in which the robots operate.

 We model the context as a global, centralized grid map with a size equal to the size of
the room.

 Each cell in the grid is either free or occupied
 Every CPSs updates the same, shared knowledge, based on the tasks that the systems

discover on a local level

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

13

Updating context models based on probabilistic
models

We update the context models during run-time, based on two probabilistic maps:

PROBABILITY GRID MAP
Probability of a dirt appearing in grid cell 𝑖, 𝑗 in the next time step:

𝑃𝑖𝑗 𝑇 =
𝑁𝑖𝑗

𝑇
with Ni,j = number of dirt tasks found since T = 0

CUMULATIVE PROBABILITY GRID MAP
Probability of at least one dirt tasks being within the grid cell i,j:

𝐶𝑃𝑖𝑗 𝑇 = 1 − (1 − 𝑃𝑖𝑗(𝑇 − 1))(1 − 𝐶𝑃𝑖𝑗(𝑇 − 1))

Probability that there is not a single task

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

14

Methodology

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

15

Multi-robot goal allocation

GOAL

Finding an optimal allocation in which the overall sum of travel costs of all robots when visiting all
detected tasks is minimized.

REQUIREMENTS

 Close-to-optimal solution

 Computationally feasible

 Dynamically adaptable during run-time

APPROACH

Multi-robot task allocation using minimum spanning forests (MSF), based on the greedy principle
termed Prim Allocation [10], using Euclidean distance heuristic

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

16

Methodology

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

17

Local path planning

 Path planning: a local phase, decentralized and distributed in every CPSs, i.e., robot.
 Compromise with the multi-robot goal allocation from the previous phase
 Minimum distance (from the goal allocation) + maximum exploration (from the path

planning)
 The motion of the agents is discrete, and with each timestamp they move up, down, left

and right

GOAL

Balance time minimization with exploration

 Use uniform cost graph search for path planning

Cost function:

Start

Left Right Up Down

Left Right Up Down

C

𝐶 = 𝑑 𝑙𝑒𝑓𝑡 − α ⋅ 𝐸(𝑥, 𝑦, 𝑙𝑒𝑓𝑡)

distance when
moving left

tuning
parameter

exploration gain
(by moving left from position x,y)

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

18

Implementation

 ROS-based communication

 Simulated in Gazebo [11, 12]

 TurtleBot3 Burgers1

 closely resemble the real world

 Simulate many robots, and different room maps
can be used
 The evaluation is done with a setup of two

robots in a single room

 Deployment to real robots without any
modification

 Implementation is open-source2

1 https://www.turtlebot.com/
2 https://github.com/tum-i22/ssacps_simulation, https://github.com/tum-i22/ssacps_packages

TurtleBot3 BurgerMap of the room, the
deployed robots and their

observation range

ROS implementation architecture

https://www.turtlebot.com/
https://github.com/tum-i22/ssacps_simulation
https://github.com/tum-i22/ssacps_packages

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

19

Evaluation

 Experimental setup:

 8 experiments in total: 1 long term (40 minutes)
and seven short-term (10 minutes)

 during all the experiments we vary:
 the exploration parameter α
 the time-interval of dirt task spawn ∆𝑡
 the use of prior learned knowledge gained

in time 𝑇*

 for a better replication of the experiments, we
fixed the frequency ∆𝑡 and used the random seed
for the appearance of the tasks.

* the prior learned knowledge comes in the form of probability task distribution that is learned for 1000 time-steps (in seconds)
before the actual measurements are collected.

Experiments parameters specifics

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

20

Results: Spawned vs. detected tasks

 Investigate whether the robots have a good coverage in the partially observable context with
regards to the detection of tasks:

α = 0, T = 0 α = 0.75, T = 1000

 No exploration and no prior knowledge With exploration and prior knowledge

RESULTS: With exploration and prior knowledge shows a much better approximation of the spawned tasks
by the detected tasks over time.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

21

Results: Goals
assigned over time

Results: Succeeded
goals (cumulative)

RESULTS: We can observe that the number of
assigned goals increases when we have exploration
and prior knowledge (depicted in orange), in
comparison, when there is no exploration and no
prior knowledge given (depicted in blue).

α = 0, T = 0 α = 0.75, T = 1000vs. α = 0, T = 0 α = 0.75, T = 1000vs.α = 0.75, T = 0vs.

RESULTS: The exploration benefits are only noticeable
when the exploration is combined with the previously
learned knowledge about the context. Otherwise,
when the system explores without prior knowledge,
it performs almost half worse than when the system
did not explore and did not learn.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

22

Conclusion

 We investigated how self-adaptive systems that establish their adaptation on incorporating
human-like activities like collaboration and learning can preserve or even improve their
performance—despite the continuous, run-time changes in the PMSSDCU context that could
not be specified during the design time.

 As part of this paper, we proposed an approach for building adaptation logic, which improves
over time and tackles different challenges of self-adaptive CPSs.

 The collaboration is enabled through run-time cooperative aggregations of the contextual
observations and run-time collaborative tasks assignment.

 The learning is achieved by storing the past contextual encounters, which later are reused in a
predictive manner, to help the systems make better, smarter decisions.

 To evaluate our approach, we built a self-adaptive system testbed from the robotics domain.

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

23

References
[1] Muccini, Henry, Mohammad Sharaf, and Danny Weyns. "Self-adaptation for cyber-physical systems: a systematic literature
review." Proceedings of the 11th international symposium on software engineering for adaptive and self-managing systems. 2016.
[2] Weyns, Danny, and Radu Calinescu. "Tele assistance: A self-adaptive service-based system exemplar." 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE, 2015.[1] SEAMS, “Self-Adaptive Systems Artifacts and Model
Problems. Tele Assistance System (TAS).”
[3] Mahdavi-Hezavehi, Sara, Paris Avgeriou, and Danny Weyns. "A classification framework of uncertainty in architecture-based self-adaptive
systems with multiple quality requirements." Managing Trade-Offs in Adaptable Software Architectures. Morgan Kaufmann, 2017. 45-77.
[4] Quin, Federico, et al. "Efficient analysis of large adaptation spaces in self-adaptive systems using machine learning." 2019 IEEE/ACM 14th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2019.
[5] Petrovska, Ana, and Alexander Pretschner. "Learning Approach for Smart Self-Adaptive Cyber-Physical Systems." 2019 IEEE 4th International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE, 2019.
[6] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 2002.
[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: Architecture-based self-adaptation with reusable
infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.
[8] V. Matena, T. Bures, I. Gerostathopoulos, and P. Hnetynka, “Model problem and testbed for experiments with adaptation in smart
cyberphysical systems,” in 2016 IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 82–88, IEEE, 2016.
[9] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, “A taxonomy of uncertainty for dynamically adaptive systems,” in Proceedings of the 7th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 99–108, IEEE Press, 2012.
[10] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. J. Kleywegt, “Simple auctions with performance guarantees for multirobot
task allocation,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 1, pp. 698–
705, IEEE, 2004.
[11] Nathan Koenig and Andrew Howard. 2004. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).
IEEE, 2149–2154. https://doi.org/10.1109/IROS.2004.1389727
[12] Carlos E. Aguero, Nate Koenig, Ian Chen, Hugo Boyer, Steven Peters, John Hsu, Brian Gerkey, Steffi Paepcke, Jose L. Rivero, Justin Manzo, Eric
Krotkov, and Gill Pratt. 2015. Inside the Virtual Robotics Challenge. 12 (2015), 494–506. Issue 2.
https://doi.org/10.1109/TASE.2014.2368997

Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

Thank you!

Contact me:

Ana Petrovska

ana.petrovska@tum.de

