

The Fourteenth International Conference on Advances in Computer-Human Interactions ACHI 2021 July 18, 2021 to July 22, 2021 - Nice, France

Sign Language Conversational User Interfaces Using Luminous Notification and Eye Gaze for the Deaf and Hard of Hearing

<u>Takashi Kato</u>, Akihisa Shitara², Nobuko Kato¹, Yuhki Shirarishi¹ ¹Tsukuba University of Technology, Japan, ²University of Tsukuba, Japan E-mail: <u>a203101@a.tsukuba-tech.ac.jp</u>

Takashi Kato

I am Deaf. Course of Information Science, Division of Industrial Technology, Graduate School of Technology and Science, Tsukuba University of Technology, Japan. I am a member of Shiraishi Iab. The main interest is in human-computer interaction from the perspective of Deaf people. Lab: <u>https://www.shiraishi-lab.org/</u>

1. Background

- 2. Related work
- 3. Methodology
- 4. Results and Discussion
- **5. Conclusion and Future work**

Background

VUI^{*}: Voice User Interface DHH^{**}: Deaf and Hard of Hearing CUI^{***}: Conversational User Interface

Background

CUI*** : Conversational User Interface

Background

Туре	Conversation	Call	
User	$CUI \to User User \to CUI$	$CUI \to User User \to CUI$	
Hearing	Voice	Voice	
DHH			

Can these modalities improve the user experience of DHH users?

Research Question

RQ1

Luminous Notification

Does the light-based response of the CUI improve the usability?

Display Sign Language/Text

What is the best sign language/text display method for CUI?

Eye Gaze in wake up

Is eye gaze an effective method of waking up to CUI?

Research Question

Luminous Notification

Does the light-based response of the CUI improve the usability?

This study guides future system designers.

display method for CUI?

Eye Gaze in wake up

Is eye gaze an effective method of waking up to CUI?

1. Background

2. Related Work

3. Methodology

4. Results and Discussion

5. Conclusion and Future work

Related Work -Accessibility studies of CUIs by DHH users-

As an alternative input method to speech,

Sign language is more suitable. [1]

The use of sign language is preferable [2]

to touch screens as an input method.

Two studies substitute sign language for speech in VUIs.

Assignment

No consider the physicality of DHH users who mainly use visual information.

[1] Rodolitz, Gambill, et al., Accessibility of voice-activated agents for people who are deaf or hard of hearing. CSUN '19, 144–156, 2019.

DHH

[2] Wojtanowski, Gilmore, et al., "Alexa, Can You See Me?" Making Individual Personal Assistants for the Home Accessible to Deaf Consumers. ASSETS '19, 16–31, 2019.

Related Work –Start of conversation by DHH person-

8

- [3] SignGenius, (June 30, 2021), ``Do's ¥& Don'ts Getting Attention in the Deaf Community,"
- https://www.signgenius.com/info-do's&don'ts.shtml
- [4] Vaishnavi, Abraham, et al., Deaf Users' Preferences Among Wake-Up Approaches during Sign-Language Interaction with Personal Assistant Devices. CHI EA '21, 1–6, 2021.

1. Background

2. Related work

3. Methodology

4. Results and Discussion

5. Conclusion and Future work

Methodology –Participants-

Participant

12 DHH students in their 20s

A similar trend research that

a minimal number of DHH users use personal-assistant devices [5]

[5] Pradhan, Mehta, et al., "Accessibility Came by Accident": Use of Voice-Controlled Intelligent Personal Assistants by People with Disabilities. CHI '18, 1–13, 2018.

39.6% recognition rate in a real-life continuous sign language [6]

The wizard can complement the undeveloped parts of the system and make it work. [7]

[6] Cui, Liu, et al., A Deep Neural Framework for Continuous Sign Language Recognition. IEEE '19, 1–12, 2019.
[7] Fraser, N.M., Gilbert, G.N. Simulating speech systems. Computer Speech and Language, 5:1:81–99,1991.

Methodology –Device Architecture-

- Remotely controllable
- Apple iPad simulated Alexa.
- The display was combined with the signer's video.

Methodology –Procedure-

- The participants interacted with the system while working on their PCs.
- Work PC that display numbers or English letters at random positions on the screen, the participant has to continuously work to entering with the keyboard.

Methodology –Analysis Method-

[7] John. System usability scale (SUS): a quick-and-dirty method of system evaluation user information. DEC, 1986.

- 1. Background
- 2. Related work
- 3. Methodology

4. Results and Discussion

5. Conclusion and Future work

RQ1: Efficacy of Luminous Notification

ltem	SUS Mean Score ± SD	Reaction Mean Time \pm SD (s)		
		Notification	End of response	
Luminous	80.67±7.62	0.91±0.35	1.37±0.50	
Conventional	68.96±14.60	1.19±0.57	1.91±1.22	
р	*	**		

SUS Score and Reaction Time

*<.05, **<.01

Wilcoxon signed-rank test result

- "Luminous" SUS Score was found to be significantly higher.
 - The reaction time was significantly shorter for "Luminous" in Notification.
 - The reaction time was no significant differences" in End of response.

Luminous notification improves the usability of DHH users.

Results and Discussion

RQ1: Efficacy of Luminous Notification

Assignment

We incorporated a **luminous** notification as a means of responding.

Need to conduct a verification that includes a **vibration** notification

We placed the system at the **front** of the participants in this experiment.

Need to find a way to make them aware of the notifications from the rear

Results and Discussion

RQ2: How to Suitably Display Sign Language/Text

Participants who have not signed for a long time tend not to believe that sign language is necessary.

All of the participants need regardless of the user attributes.

Results and Discussion

RQ2: How to Suitably Display Sign Language/Text

VUIs has the advantage of being eyes-free. [8]

DHH users

The advantage of eyes-free interaction is lost.

Need **text information** that they can recognize, even if they look away for a moment

Need to stop the sign language when the user looks away and start again when the user looks back

RQ3: Efficacy of Eye Gaze

Percentage of Eye Gaze, Time of Eye Gaze

Task	Percentage (%)	Mean±SD (s)	min (s)	Max (s)
Alarm	100	0.76±0.61	0.20	3.18
Weather	100	0.43±0.23	0.10	1.08
News	86.4	0.59±0.44	0.20	2.08
Total	93.4	0.59±0.47	0.10	3.18 2

Percentage users gazed at the system before commanding is high.

A time limit when Alexa waits for a response from the user is 8.0 s. [9]

Eye gazing is a compelling wake-up method.

[9] Developer documentationamazon alexa, (June 7, 2021), ``Alexa Design Guide. Be Avaiable,'' https://developer.amazon.com/en-GB/docs/alexa/alexa-design/available.html