Scalability of the Size of Patterns Drawn Using Tactile Hand Guidance

Dhanya Nair Fowler School of Engineering Chapman University California, USA email: <u>dnair@chapman.edu</u>

The Fourteenth International Conference on Advances in Computer-Human Interactions (ACHI 2021) July 18-22, 2021

Brief Bio

Dhanya Nair

Education:

PhD. & M.S. in Electrical Engineering, Texas Tech University (2013)B.Tech. in Electronics and Communication, CUSAT, India (2006)

Work Experience:

- Assistant Professor, Chapman University (2019 Present)
- Assistant Professor, Weber State University (2016 2019)
- Fault Isolation Engineer, Blast Motion (2014 2015)
- Yield Analysis Engineering, Intel Corporation (2013-2014)

Research Interests:

- Haptics, Assistive Technology, Handwriting Training, Braille Displays, Tactile Music.
- Website: ndanya.wixsite.com/heartlab

Motivation

- 2.4 million students in USA (between 3-21 years) had *specific learning disabilities*, during the 2019-2020 school year.
 - Specific learning disability: Disorders impacting the understanding or use of spoken or written language.^[1]
- Handwriting training helps improve fine motor skills, general language skills and develops cognitive skills plus neural pathways for better reading and comprehension.^[2]
- Assistive handwriting training devices help children with learning disabilities and rehabilitation of individuals with motor skill issues.^{[3][4]}

Related Work

- Haptic assisted handwriting training
 - has gained interest recently.
 - has shown promise in developing strong visuomotor skills.^{[2]-[6]}
- Haptic assisted handwriting research utilize Phantom Omni/Novint Falcon primarily.^{[2]-[9]}
 - Tethered, allocated space, expensive.
- We have developed a wearable sleeve for providing corrective vibrotactile feedback.
 - Untethered, and inexpensive.

Phantom Omni (above) and Novint Falcon are the primary sources of haptic feedback for handwriting training.

Objective

This study evaluates the feasibility of using the tactile sleeve for guiding the user towards the correct form (shape) and size/scale of different characters, with the eventual goal of handwriting intervention.

Hence, it investigates the following:

- 1. Can the user respond to a vibration and **correct their hand movement in the desired direction**, while they are attempting to draw a pattern?
- 2. Can the user's hand **move a consistent distance** for identical vibrational cues (same vibrational intensity for the same time)?

Sleeve Overview ^[10]

- Sleeve embedded with 4 vibrating motors.
- Only 1 motor activated at a time.
- The activated motor indicates the desired direction of movement (up, down, left, right).
- Hence, 90° directional cues only.
- The vibrotactile sleeve was used to guide participants through blind patterns/letters from different languages.

Sleeve embedded with 4 mini vibrating disk motors:

- up: near wrist on dorsal side.
- down: near proximal region on ventral side.
- left/right: midway on radial/ulnar sides.

Hypotheses

- <u>Hypothesis 1</u>: Participants will be able to identify the vibrational direction provided by the sleeve and **trace these blind patterns with high accuracy.**
- <u>Hypothesis 2</u>: The size of the patterns drawn will scale with the duration of vibration.
- <u>Hypothesis 3</u>: Shorter vibrational durations (< 3 seconds) will show higher variability in the pattern size.
 - Average 1 second required for comprehending the direction to be moved in, hence the cognitive load might override the ability to maintain a steady size.

Methods: Training

• On a graph paper, draw straight lines in the direction of the activated motor .

Training: Practice tracing English letter f while receiving vibrations corresponding to the pattern through the sleeve.

- Each 1cm distance corresponds to 1s continuous motor vibration in that direction.
- Segment = Continuous movement in one direction.
- Change from one segment to next is continuous.
 - no break or cue to participants before segment changes.

Letter f in square font showing the 7 segments to be drawn in the order numbered. Each grid is 0.5cm and each 1cm distance is encoded using a 1s vibrational duration/movement in that direction.

Methods: Testing

Left to right: English letter a, Arabic letters s and f, Malayalam letters sh, a respectively.

- 3 healthy adults participated in this pilot study.
- 5 patterns from different languages projected on participant's arm -> To evaluate shape formation (form).
- Letters presented at 3 different scales: 1s, 2s, 3s -> To evaluate scaling.
 - Each 1cm encoded as 1s continuous vibration for 1s scale
 - Each 1cm encoded as 2s continuous vibration for 2s scale, etc.
 - Only English and Arabic letters presented at different scales to avoid fatigue.
 - Malayalam letters were presented only at 1s scale.
- Hence, 11 patterns with 100 segments (directional changes) per participant.

Results: Pattern Shape

- The participants drew the blind patterns with high accuracy.
- Average accuracy: **95.67%**
 - individual accuracy of 96%, 95% and 96% per subject
- Hence, hypothesis 1 is supported:
 - Participants were able to distinguish the direction provided and trace the blind patterns with high accuracy.

Results: Pattern Size and Scalability

- Size of the segments drawn by the subjects increases linearly with the increase in tactile duration.
- Hence, hypothesis 2 is supported:
 - The size of the patterns drawn does scale linearly as a function of the tactile duration.

Cumulative data for the segment sizes drawn vs. the duration of continuous vibrational stimulation.

Results: Pattern Size Variability

- Standard deviation
 - very low for small segments
 - increases with the segment length
- Hence, as the tactile duration increases, error in sizing increases.

Duration (s)	1	2	3	4	6	8	9	12
Avg. size (cm)	0.982	1.281	2.595	3.818	6.163	8.536	9.800	14.068
Variance (cm ^ 2)	0.013	0.062	0.242	0.524	1.198	2.522	3.410	10.251
Std. dev. (cm)	0.114	0.248	0.492	0.724	1.094	1.588	1.847	3.202
Median (cm)	1	1.25	2.5	3.75	6.1	8.4	9.875	13
CV	0.116	0.194	0.189	0.190	0.178	0.186	0.188	0.228

Statistics of sizes drawn for different durations

- Contrary to expectation: hypothesis 3 is not supported.
 - When the vibrations provided continuously for a longer duration, it becomes more difficult to maintain the steady speed.

Conclusion

- Tactile feedback shows promise for handwriting training, and shape/size of letters can be controlled.
- Three subjects drew blind patterns using the tactile feedback from the sleeve alone. Following conclusions were drawn:
 - Patterns can be reproduced with high accuracy.
 - Segment lengths can be scaled linearly using vibrational durations.
 - Hence, shorter segments (of less than 5cm) provide using continuous vibrations.
 - If longer segments need to be drawn:
 - Break it into multiple small segments each with continuous vibrations of less than 5s with a small break (no vibration) between the segments.

WIP and Future:

 Test on larger number of participants, and individuals with visuo-motor skills issues / learning disabilities.

References

1. National Center for Education Statistics, [Online]. Available: <u>https://nces.ed.gov/programs/coe/indicator/cgg</u>

2. Park et. al, "Haptic guidance to support handwriting for children with cognitive and fine motor delays," *IEEE Trans. on Haptics*, 2021 (Early Access), doi: 10.1109/TOH.2021.3068786.

3. W. Park, et. al., "Evaluation of Handwriting Skills in Children with Learning Difficulties," In Proc. Human-Computer Interaction, HCII 2019, vol. 11573. pp 150-159.

4. J. Mullins, et. al., "Haptic handwriting aid for training and rehabilitation," *IEEE International Conference on Systems, Man and Cybernetics*, 2005, vol. 3, pp. 2690-2694.

5. F. Bara, et. al., "Haptics in teaching handwriting: The role of perceptual and visuo-motor skills", Human Movement Science, Elsevier, Aug. 2011, vol. 30. pp. 745-759.

6. S. Chang, et. al., "Visual and haptic perception training to improve handwriting skills in children with dysgraphia," *American Journal of Occupational Therapy*, Jan. 2017, vol. 17(2). doi: 10.5014/ajot.2017.021311.

7. Y. Kim, et. al., "**Haptics Assisted Training (HAT) system for children's handwriting**," In Proc. *IEEE World Haptics Conference*, WHC 2013, pp. 559-564, doi: 10.1109/WHC.2013.6548469.

8. W. Park, et. al., "Investigating haptic guidance methods for teaching children handwriting skills," *IEEE Transactions on Haptics*, 2019, vol. 12, no. 4, pp. 461-469, doi: 10.1109/TOH.2019.2922284.

9. Teranishi, et. al. "**Combining full and partial haptic guidance improves handwriting skills development**," *IEEE Transactions on Haptics*, 2018, vol. 11, no. 4, pp. 509-517, doi: 10.1109/TOH.2018.2851511.

10. D. Nair, et. al., "Handwriting correction system using wearable sleeve with optimal tactor configuration," In Proc. of *IEEE International Conference on Ubiquitous Robots*, July 2021, in press.

Scalability of the Size of Patterns Drawn Using Tactile Hand Guidance

THANK YOU!

Questions?

Contact:

Dhanya Nair

email: dnair@chapman.edu

Prior Work ^[10]

Overall system consists of:

- Wrist worn sleeve
 - embedded with 4 motors.
 - ESP32 controller and battery.
- Webcam
- Learn-to-write software

System architecture and sleeve design was presented in [10].

Haptic sleeve (controller circuit, motors, batteries inside) Transparent stand (to draw on)

Webcam (connected to laptop via USB)

Laptop with the Learn-to-write software program running

