

### Incremental Learning For Fundus Image Segmentation



Javier Civit-Masot, Luis Muñoz-Saavedra, F. Luna-Perejón, Juan M. Montes-Sánchez, M. Domínguez-Morales Robotics and Computer Technology Lab

Avda. Reina Mercedes s/n, E.T.S. Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain Email: {jcivit, luimunsaa, fralunper, jmontes, mdominguez}@atc.us.es



# ----- Architecture

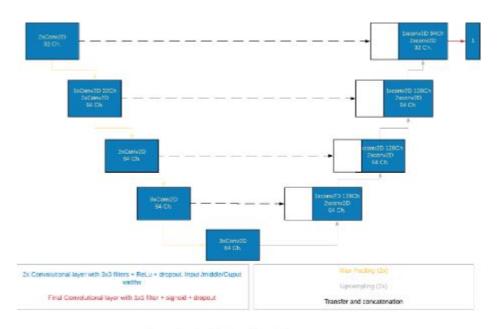



Fig. 1: U-Net Architecture





## **Eye Fundus & Datasets**

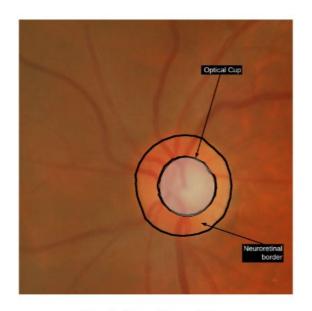



Fig. 2: Optic Disc and Cup

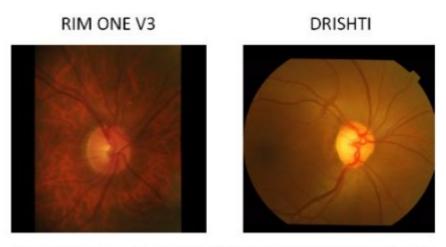



Fig. 3: Images from RIM ONE and DRISHTI datasets





#### TABLE I. OD segmentation Dice (Mean/Best/Worst) and RRP

|               | Dice-DRI | Dice-RIM |
|---------------|----------|----------|
| DRI-Trained   | 0.98     | 0.64     |
| RIM-retrained | 0.89     | 0.80     |

#### TABLE II. OD segmentation RRP

|               | RRP-DRI | RRP-RIM |
|---------------|---------|---------|
| DRI-Trained   | 100%    | 23%     |
| RIM-retrained | 89%     | 80%     |

### TABLE III. OD segmentation Dice comparison.

| Author                       | DRI  | RIM ONE |
|------------------------------|------|---------|
| Zilly et al. [12]            | 0.97 | 2       |
| Al-Bander [2]                | 0.95 | 0.90    |
| Sevastopolsky [3]            | -    | 0.94    |
| Shankaranarayana et al. [11] | -    | 0.98    |
| Drishti Trained              | 0.98 | 0.64    |
| RIM Retrained                | 0.89 | 0.80    |





### Conclusions

We have shown that by performing a fast retrain when adding data from a new dataset, and by preprocessing images and performing static and dynamic data augmentation, we can implement disc segmentation with an equivalent performance to that reported by researchers who use a single dataset both for evaluation and testing.

We also define a clinically significant parameter (Radii Ratio parameter- RRP) that can be useful to estimate the quality of the CDR estimations and thus, to give some confidence on the quality of the system for glaucoma prediction