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Introduction

• We witness an exponential growth of knowledge
• In 2016, 90 % of available data were not available two years prior.
• Modern economies shifted to knowledge-based economies.
• Intellectual capabilities and expertise determine the individual values 

in an enterprise or a societies.
• Measuring the level of expertise is a challenge.
• Expert recommender system is a solution



Introduction
• Expert Recommendation System types :

- Manual Systems

- Individual inputs his or her own skills 

- Example : Yellow pages
- Issues: manual update and accuracy problems

- Automated System: 

- Intelligent Systems that extract skills from documents (e.g. Internal email communications)

- Similar to search engine
- Example: P@noptic expert System

- Issues: 
1. Rely on textual representation of a document
2 . No standard terms to describe skills



Expert Recommendation in Academia

• Expert recommendation is not limited to industry

• In academia, it has been used to:

- Hiring and recruiting process.

-Recommend experts to evaluate patents.

- Identifying reviewers for scientific conferences.

- Assembling a conference program committee.



Expert Recommendation Challenges in Academia

• Accuracy 
• Direct and indirect bias.
• Bias from ML algorithms.
• Lack of opportunity for junior researchers
• Not addressing fairness and diversity issues.
• Bias based on gender, race, and location is well documented in 

academia.



How to Address These Challenges

• Develop a unified representation (profile) for researchers that quantifies
skills and demographic of a researcher.

• Include key demographic and socioeconomic  information about 
researchers to ensure fair and diverse representation.  

• Investigate recommendation algorithms to eliminate bias sources

• Develop accurate and fair recommendation algorithms that recommend 
diverse researchers.



Our Research 

• Problem :Recommend experts to join a conference program 

committee.

• Techniques: Machine Learning, Expertise Retrieval System, and 

Information Retrieval.

• Goal: Provide efficient, fair, and diverse group representation



Research Plan 

• We will have two goals to achieve that:

Goal 1: Modeling a researcher: by modeling the expertise and    

demographic features of a researcher.

Goal 2: Design algorithms to recommend researchers to a program 

committee based on the profile developed in Goal 1                           



Contributions
• Propose a novel way to model an expert in the educational setting using

a multivariate profile.

• Present new expert recommendation algorithms that consider different

demographic attributes.

• Propose a modified metric that evaluates ranking based on different

attributes.



Expert Recommendation - A Proposed System

Expertise 
Profile

Demographic  
Profile

Expertise-Based 
Recommendation

Fairness – Based  
Recommendation

Diversity – Based 
Recommendation

Expertise 
Profiler

Hybrid-Based 
Recommendation



Expertise Profile

• Expertise profiling can be defined as a record that shows the 
proficiency of specific knowledge areas that an expert possesses 
• Challenge: How to describe skills in academia?
• We use the h-index as a metric to quantify the skills of a researcher.
• h-index was proposed by Hirsch in 2005 to measure the researcher's 

quality and productivity.
• h-index scores are also employed by funding bodies and employers to 

determine funding, career decisions, promote and award committees.
• Using a single score number to assess researcher expertise helps to 

rank those candidates and finally makes these decisions much easier.



Expertise Profile

• Different scholarly databases (Google Scholar, Web 
of Science, Scopus, and Publish or Perish), different 
h-index. Which one to consider?

• Google Scholar appears to offer more excellent 
coverage and accuracy for computer scientists 
compared to other bibliometric databases as 
indicated by research.



Demographic Profiler

• Model the demographic information of a researcher
• Challenge: Privacy Concerns?
• What features to collect?

Gender Ethnicity

Career Stage University Rank

Geolocation



How to Predict Gender and Race
• We will use NamSor to predict gender.
• A database of more than more than 4 billion names.
• It uses novel machine-learning algorithm to provide a 

matching probability for the gender and race. 
• Query a first and last name and return the gender with a 

confidence based on the distribution of that name across 
female and male.

• We will accept a confidence of 0.6 or more as a gender 
accuracy. Other case will be reviewed manually

• Our Validation: Accuracy is 80% with respect to Chinese 
names and 92% percent with respect to others.

• We manually rectified any discrepancies. 



• 15% Accuracy to 
predict African 
race. 

• We manually 
rectified any 
discrepancies.

• Nevertheless, the 
software predicts 
other races with 
an acceptable 
accuracy of 75-
80% 

Validation



How to Get Other Demographic Parameters

Affiliated University Geolocation
Geolocation

Career Stage

University Rank

Feature Value
Gender Female

Ethnicity Black

Career Stage Junior Researcher
Nationality United States (Developed)
h-index 10
University Rank 129



Adding an Expert to A Group

• Task: Recommend researchers to join a group.

• Three approaches to achieve that:

a.) Expertise Recommendation Approach.

b.) Diverse Recommendation Approach.

c.) Hybrid Recommendation Approach.



Approach 1 – Expertise Recommendation Approach

• To add researchers to a team (e.g., conference program committee):
- Get the h-index of every author who published an article in that 

conference.
- Extract Google Scholar(GS) h-index.

- Rank the scholar with respect to h-index score.
- Recommend the top ranked experts and according to the   

required size of the conference PC.

- Advantage: Maximizes the expertise in the process of the 
recommendation.



Expertise Recommendation Approach Disadvantages

• This approach has several disadvantages: 
- Systematic bias: Does not consider the issue of the gender gap 

and the race gap. Hence, we might end up with a team of the 
same race or gender. 

- Less opportunities for junior researchers by favoring highly cited 
researchers.

- High h-index researchers are employed by the top rank 
universities, and this approach would less favor those 
researchers from lower-tier universities.



Approach 2 – Diversity Approach

• A social science approach that addresses social inequality and bias.
• Protected parameters that are those demographic information that

should not bias against.
• Protected parameters can be defined by the law or by the

environment.
• We assume that protected parameters vary from environment to

another. For example, the protected value for gender is not STEM
education is not the same as in nursing.
• We will model the value for the protected parameter as binary

variable that can be either 1 or 0.



Approach 2 – A 
Diversity 
Approach(DIV)

• Binary profile will be calculated 
for each expert.

• Experts are ranked according to 
the sum of their demographic 
features from equation 1 in a 
descending order.

• If two or more experts have the 
same diversity score, then the one 
that has the highest h-index will 
be ranked higher.

• Recommend the top ranked 
experts and according to the 
required size of the conference PC.

Group X1 X2

Gender Female Male

Ethnicity Non-white White and Asian

Geo-Location Developing countries Developed countries

Career Stage Junior researcher Senior researcher

Institution

Rank

> = 563 (mean rank) <  mean rank (563)

Rdem< 0,1,1,1,1,1,0>

Researcher demographic Profile

Protected 
Parameters



Approach 3 – Hybrid Recommendation Approach

• Approach 1 enhances the expertise of the team but fails to address 
the problem of forming a diverse team
• The diversity approach solves that problem, but again it might cause a 

drop in the expertise level of a team .
• We introduce a hybrid (fair) approach that considers linear 

optimization to achieve a balance between the two approaches.

Score(H) = [α* Score(DIV)] – [(1- α)* Score (EXP)] 



Approach 3 – Hybrid Recommendation Approach

• We will introduce different values for a and compare the 
performance at each step.
• To make the two scores comparable, we will normalize using min-

max normalization.

Score(i)norm = !"#$%!&'()(!"#$%)
',- !"#$% &'()(!"#$%)



Evaluation - Dataset

• PC and author profiles of three top ACM conferences for the year of
2017 (ACM SIGCHI, SIGCMOD, SIGCOMM) were collected.
• Expertise and demographic profiles were built by extracting the data 

from Google Scholar and personal homepages of researchers.
• Only academic profiles are kept (Industry profiles were excluded).
• Total profiles are 1217.

Conference PC members Authors 

SIGCHI17 213 436 

SIGMOD17 130 290 

SIGCOMM17 23 125 

 



Baseline and Metric

• Generate different K ranking, where K is the ranking cutoff, using our 
proposed algorithms and the following baseline:
• Baseline:  We used the Expertise approach that selects candidates 

based on qualifications (h-index) only as our baseline.
• Metric 1: Diversity gain based on mnDCG:

- Modified nDCG that support multiple features simultaneously.
- Three steps calculation:

Step 1: Calculate the Discounted Cumulative Gain (DCG) per
feature as per equation 4 

score(f,i) is the score for feature f
for the candidate i in the expert 
demographic profile. 



Baseline and Metric

Step 2: Ideal Discounted Cumulative Gain (IDCG) is calculated for each
feature by ranking candidates in a descending order based on that
feature (f) as in (5).

• Step 3: The process repeats itself for all features and the mnDCG is the
average nDCG gain over all features as shown in (6).

Metric 2: F-Measure: We will use the F-measure as the harmonic mean 
between the diversity and expertise gain.



Experiment

• For each dataset (i.e. conference), we recommend researchers from 
the authors’ pool in each dataset to join a conference PC.
• We tested recommending different number of researchers by

recommending (50, 100, and all authors in that conference) to join 
the PC.
• We compare the diverse recommendation approach to expertise 

recommendation and random recommendation approaches. 
• We reported the mnDCG (the diversity gain) for each algorithm with

the corresponding PC size.



Diversity Approach Evaluation

• the DIV algorithm always
outperforms the other algorithms
with respect to diversity.

• The expertise recommendation
produces the poorest diversity
performance as compared to other
algorithms, including random.

• This confirms that considering
expertise alone produces program
committees that do not reflect the
demographics of the community
as a whole.



Hybrid Approach Evaluation

• We report the expertise saving to 
represent the amount of expertise 
retained after incorporating diversity, 
and the diversity gain relative to the 
baseline expertise algorithm. 

• We use F-measure combine the two 
diversity and expertise gains into a 
single metric. 

• We report the result using a using 
steps of 0.1 , where a of 0 indicates 
the expertise only algorithm and a
1.0 indicates the diversity only 
algorithm. 

• The highest F-measure is achieved 
when alpha is 0.4 indicating a 60%
contribution from the expertise 
ranking and 40% from the diversity 
algorithm. 



Figure 1 Demographic Gain with Average Expertise Loss of 7.8% 
When Recommending 50 researchers using a = 0.4 

• The hybrid approach
outperforms the baseline
(expertise) by increasing the
representation of all
underrepresented groups with
a minimal expertise loss.

Hybrid Approach Evaluation



Hybrid Approach Evaluation

• We recommend the same PC size from 
a pool of the real PC and conference 
authors and compare it to the 
demographic distributions of the real 
PC as shown in Figure 2. 

• Our algorithm increased the
representation of all demographic
groups on average across the three
conferences. The average expertise
loss, as measured by the DCG on the h-
index, was 1.3%, a small penalty to pay
for increased diversity.



Conclusion

• We present an approach to incorporate demographic fairness in expert
recommendations in academia .
• We introduce a more comprehensive way to represent demographics in

researcher profiles in order to achieve fairness, increase demographic
diversity, and ensure that members of underrepresented demographic
groups have access to career opportunities
• We evaluate three scholar recommendation approaches: 1) the expertise

model; 2) a new diversity model; and 3) and a balanced approach between
that balances diversity gains against loss of expertise.
• We created a dataset of 1217 researcher profiles from the three top ACM

conferences for 2017



Conclusion

• We consider a specific example of expert recommendation in
academia that is recommending researchers to join a conference
program committee .
• We evaluate our algorithms using a modified nDCG metric, mnDCG,

that measures gain across multiple dimensions.
• Our results show that the best parameter value for the three

conferences studies is approximately 0.4, i.e., 40% weight to the
diversity recommendation and 60% weight to the expertise
recommendation.



Future Work

• We will extend the demographic profile design to contain continuous
values to provide a wide range of demographic groups for the same
attribute.
• We will apply these new profiles to fair group formation algorithms .
• We intend to assign different weights to each demographic feature

based on different mechanisms and study whether this leads to a
better demographic representation.
• We plan to study the demographic composition of different academic

conferences in other domains.


