Université Gustave Eiffel

Driver Response to Gear Shifting System in Motion Cueing Driving Simulator

Navid Ghasemi¹, Hocine Imine², Claudio Lantieri¹, Andrea Simone¹, Valeria Vignali¹, Roland Brémond²

¹Department of Civil, Chemical, Environmental and Materials Engineering (DICAM),

University of Bologna

²The Perceptions, Interactions, Behaviours & Simulations Lab for road and street users (PICS-L), Gustave Eiffel University

Contact Email: navid.ghasemi3@unibo.it

Navid Ghasemi

Navid Ghasemi is a Postdoctoral Researcher at the Department of Civil, Chemical, Environmental and Materials Engineering (DICAM) in the University of Bologna. He received his co-tutelle Ph.D. in signal, Image and Automatic from Pairs-Est University and in Civil Engineering from road department (DICAM) at University of Bologna.

His research interests includes Driver Behaviour, Road Safety and Sustainable Mobility.

Motion Cueing in Driving Simulation

Vehicle dynamic model is essential!

- Produce accurate vehicle dynamics
- Provides Necessary input for motion cueing
- Comparable results with the real road

Simulacet Driving Simulator Architecture

- The "Simulacet" driving simulator is designed with a 2 DOF motion platform.
- The visual image is provided by the means of three HD fixed LED screens.
- Sound cues are provided with speaker

Simulation Model

The vehicle model is implemented in MATLAB-SIMULINK, which calculates the vehicle states in real-time (1000 Hz) using the inputs from the driver cabin.

K	→ KŽ) -				→ Ľ
Driver	Engine	Tyre Model:	Force Model:	Trajectory	Motion restitution
	Inputs: Pedals Friction	Inputs: Wheel Torque	Inputs: Forces on tyres rotation angles	Inputs: Acceleration and speed (Earth Fixed)	Inputs: Acceleration, rotation (COG)
Output : Pedals steering	Outputs : Wheel torque	Outputs : Wheel Speed and forces	Outputs : Acceleration and speed (Earth Fixed)	Outputs : Acceleration, rotation and speed (COG)	Outputs : Movement of the platform

Motion Cueing Algorithm

Classical Motion Cueing Algorithm Developed considering :

- Keep the platform within the physical limitations.
- Reproduce accelerations.
- Return the motion platform to zero position for the next movement, under participants perception threshold

Experiment Driving Task

Section A: following the lead vehicle

Section B: Take Over and two Chicane Maneuver

Scenarios: Gear Shifting System

Results:
Subjective AssessmentQuestionnaire : 5 point Likert scale1. I had a realistic driving experience2. I drove as I normally would3. Cabin movements were realistic4. Cabin movements helped control to
S. In the overtaking maneuver, the
were realistic5. In the overtaking maneuver, the
were realistic6. The movements of the cabin did r
when I had to go back to the straight

• During the movement on the second chicane with higher speed, in the manual and assisted scenario most of the users were undecided

SIMULATOR SICKNESS QUESTIONNAIRE

- All Sessions belongs to no symptom's category regarding the median.
- Considering the mean, the, "Assisted" and "Automatic" Sessions makes negligible symptoms, whereas the "Manual" session illustrates more simulation sickness symptoms

Questionnaire : 5 point Likert scale	Scenarios		
	1	2	3
1. I had a realistic driving experience	4	4	4
2. I drove as I normally would	4	4	4
3. Cabin movements were realistic	4	4	4
4. Cabin movements helped control the car	3	3	4
5. In the overtaking maneuver, the movements of the cabin were realistic	4	4	4
6. The movements of the cabin did not cause me any problem when I had to go back to the straight line after the chicane	4	4	4
7. The movements of the cabin in the first chicane were realistic	4	4	4
8. The movements of the cabin in the second chicane were realistic	3	3	4
9. The movements of the cabin in turning were not exaggerated compared to those of a real car	4	4	4
10. While accelerating, the movements were realistic	4	4	4
11. While braking, the movements were realistic	4	4	4
12. When accelerating and braking immediately, the cabin movements were realistic	4	4	4
13. When braking and accelerating immediately, the cabin movements were realistic	4	4	4
14. The movements were pleasant and not troublesome	4	4	4

Results: Objective Assessment

- RPM: No significant difference between the scenarios.
- Maximum longitudinal acceleration was only different during the first braking.
- Maximum lateral acceleration were not significantly different.

Maximum engine RPM in section B

Maximum Longitudinal braking at braking in Section A

Maximum lateral acceleration at chicane in Section B

Conclusions and Future Work

- Motion cueing feedback was favorable by the participants and increased the immersion in the virtual environment.
- The investigation of the motion platform accelerations showed no significant difference in driver control input and output of the vehicle model with different gear shifting scenario.
- In conclusion it can be say that drivers tend to adapt very fast to the driving simulator condition.

Authors

Hocine Imine

Claudio Lantieri

Valeria Vignali

Roland Bremond

Andrea Simone

Navid Ghasemi