

#### Measurement Accuracy on Indoor Positioning System Using SS Ultrasonic Waves for Drone Applications

Tatsuki Okada and Akimasa Suzuki Iwate Prefectural University Email:g231s004@s.iwate-pu.ac.jp

#### Resume

#### Tatsuki Okada

- Educational Background
  - Iwate Prefectural University, Iwate, Japan
    - Apr 2016 Mar 2020: Faculty of Software and Information Science
    - Apr 2020 present : Graduate school of Software and Information Science
- Field of study
  - Robotic systems
  - Sensor



## Background

As unmanned aerial vehicles (UAV), drone can take off and land vertically in small spaces.



### Background

It is more dangerous to use drones indoors than outdoors.



It is essential to determine the absolute coordinates in space of the drone in relation to other objects.

■GNSS signal is difficult to detect indoors.

In Simultaneous localization and mapping (SLAM) cause large errors.

> The flight path of routine inspections is often in a dark place.

≻The walls do not always follow a uniform pattern.

## Propose

■ We develop an indoor positioning system for drones to obtain 3D coordinates in areas where SLAM is not available.

- ➤We use spread spectrum (SS) ultrasonic waves, which are expected to acquire 3D coordinates with an accuracy of 10 cm.
- ➢ However, noise from the propellers or downwash of a drone may lower this accuracy.

This study conducts an experiment to evaluate the positioning accuracy of drone flights during a periodic inspection.

# A method for positional calculation

- 1. Distance  $(r_1, r_2, r_3)$  between the receiver *Rc* and each transmitter are obtained.
- 2. Three spheres whose radius is  $(r_1, r_2, r_3)$  are generated.
- 3. The planes ( $Plane_{23}$ ,  $Plane_{13}$ ) from the pairs of  $Tr_1$  and  $Tr_3$ , and  $Tr_2$  and  $Tr_3$  are solved by simultaneous equations.
- 4. Line of intersection is obtained from the two planes.
- 5. The Two points at the intersection of the line with an equation of an arbitrary sphere are solved.
- 6. One solution becomes outside of the room. The other solution is the position *Rc* of the receiver.



## SS signal

■ The SS signal is modulated by binary phase shift keying.> M-sequence

- A pseudorandom code sequence, with a direct sequence method.
- $t_c = 4/f$  ( $t_c$  is defined as the time required to describe 1chip of the M-sequence, f is carrier frequency.)
- The length of SS ultrasonic signals becomes  $2^9 1 = 511$  [chip] due to a 9-bit shift register for the M-sequence.



#### Hardware structure of a positioning system using SS ultrasonic waves



# Our proposed indoor positioning system

- The figure below shows the layout of the transmitter and receiver. > (a): A periodical inspection at a plant.
  - $\succ$  (b): A communication drone.
- (a) has the transmitter mounted on a cross-shapes. (b) is mounted in four corners of a room.
  - In (a), considering the Dilution Of Precision (DOP), the larger the mount size, the more accurate the expected positioning accuracy.
  - In (b), the transmitters are more difficult to install, but DOP is better than the situation in (a).



Iwate Prefectural University

## Positioning error by drone noise and downwash

- Purpose: To evaluate the effects of motor noise, wind noise, and downwash generated by the propeller during flight with SS ultrasonic positioning.
- The environment used for this experiment.
  - ≻ A room is 2000mm long and 4000mm wide.
  - Four transmitters Tr1–Tr4 were place.
    - $Tr_1[mm] = (500,2000,1500) Tr_2[mm] = (1000,1500,1500)$
    - $Tr_3[mm] = (1500,2000,1500) Tr_4[mm] = (1000,2500,1500)$
  - $> l_1 l_4$ , are measured for each receiving point.
  - $\succ$  The drone hovers about 500mm above the receiver.
  - Video during the experiment: <u>https://youtu.be/\_LmJQrC1Wdw</u>



## **Measurement error in distance**

- The results of the experiment show that all measured distances are obtained when the drone is flying.
- A greater distance between the transmitter and receiver indicates larger measurement distance.
- The difference in the distance between Tr2 and Rc(1000,1500,4000), where above Tr2, is increased by the drone hovering.



### **Measurement error in distance**

- It can be seen that the difference in the distance between Tr1 and Rc(500,2000,4000) increased by hovering the drone.
- Compared to Rc(1000,2000,4000) and Rc(500,2000,4000), the average difference decreases.
- → Indicate that a drone's downwash and noise have a significant effect on the measurement distance when the transmitter and receiver are facing each other.



# **Positioning error**

- Positioning errors were evaluated using the Root Mean Square (RMS) of the difference between the results and the installed distances.
- The graph indicates that the positioning error increased when the drone is flying because of downwash and flight noise; however, the average errors are less than 15cm.
- The greater the distance between the transmitter and receiver, the larger the average RMS positioning error and variance.



## **Conclusion and Future work**

#### Conclusions

- ➤This study proposed a positioning system using SS ultrasonic waves for indoor applications, such as drone communication and wall surface inspection, and evaluated the effects of the system against drone downwash and noise.
- ➤The experimental results for assuming an inner wall inspection by the drone shows that downwash increases the positioning errors.
- $\succ$ But the errors are less than 15cm.

#### ■ Future Work

- >We will evaluate the errors in positioning with multiple drones.
- >We will discuss their errors occurred by flight noise and downwash.