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INTRODUCTION

*Why do we need wireless communication in vehicle?

*"The number of electronic devices and sensors have
increased significantly over the years.

= The number of electric control units (ECU) has increased
from 75 (2010) to 150 (2019).

= Today, electronic devices is responsible for 40% of the
cost of a vehicle, as compared to 18% in 2000.

*The wire harness is the third most heaviest
component after the chassis and engine.

= Can weight as much as 60 kg.




INTRODUCTION

“Research on automotive electronics is growing.
= New features and technologies implemented in vehicle to improving driver safety and experience.
= Which leads to increasing demand for high-bandwidth network and more cost effective solutions.

“Implementing wireless communication to reduce or replaced a wired network can bring
significant benefits.

"The wireless solution offers advantages over wired based solutions.
= Save physical space
* Reduce weight
" Increased fuel efficiency
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INTRODUCTION

“Challenging operating environment with heavy multipath.

“No definite answer on which technology is the most suitable.

=A good understanding of the channel conditions and properties of intra-vehicle channels is

required.

"Performance requirements.
= Reliable

= Low-latency (in certain application)
= High bandwidth (in certain application)
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INTRODUCTION

Investigating the loss performance of the intra-vehicle channel
Mean loss
Large-scale fading
Small-scale fading

Compare large-scale against small-scale fading component

Assess different distribution function that best fit the large-scale and small-scale fading
component



EXPERIMENTAL SETUP

= Channel loss measurement was performed on Jaguar land rover discovery sport.

- Equipment and settings - \;
* 2 x Ettus USRP B210 p USRP (Tx) o "\
* 2 x Laptop T T o
- . @
* Omnidirectional antenna N ) Ethernet [—_1
* Frequency — 2.4 GHz & 5.9 GHz S | e

* A frequency spectrum scan was performed before taking measurements.
* The vehicle engine and electric power turned off during the tests.



MEASUREMENT PROCEDURE

= Measuring the received signal power at 44 different locations across the passenger and
boot compartments.

* The transmitter was placed at a fixed location on the dashboard of the vehicle, while the
location of the receiver (USRP) was changeable.

Transmitter & 3 Recelver




INTRA-VEHICLE PATH LOSS MODEL

* The intra-vehicle path loss L,, behavior is modelled by combining the mean path loss L, the loss due to

r(t)
LS - shadowing
LS - mean r(t) |

“Large-scale fading
= The slow-varying signal envelope

- i L \l\ |
? Ll kllx‘ — LRI TR
= Shadowing + mean r(t) 60 R s
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“Small-scale fading Example | 1}

= The rapid or fast changing received signal 00 = = T T 0 |50 60 70 80 90 100

envelope Digftance (m)

Received power(dBm)




EXTRACTING THE LARGE SCALE FADING

The large-scale fading also known as shadowing represents the local average slow fading
characteristic of the received signal.

Defined in this analysis as the local-mean received signal power within a window of 50 cm which is
equivalent to 4 A at 2.4 GHz and 10 A at 5.9 GHz.

L, represents the local mean, k is the window size defined by the number of samples within the
window, and L; is the path loss of the i th sample.



SMALL-SCALE FADING

The small-scale fading component was extracted from the measured path loss from by
deducting the large-scale fading component from the actual loss measurement which
represents the relative loss variation (RLV) for small-scale fading.
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RESULT: MEASURED PATH LOSS, MEAN LOSS.
LARGE SCALE FADING
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RESULT: LARGE-SCALE FADING

GOODNESS OF FIT FOR LARGE-SCALE FADING (X, )

Frequency: 24 GHz

Dhstnbution ES Chi MLE

Log-normal | 73.55% [ 2355% | 3T07%

* Cumulative Density Function (CDF) of the large-scale fading. Rakilh | 002 | 5% | <BOIS

ician 6.92% 23.85% 73.62%

. . . Weibull 0.41% 23.67% 2.92%

- Represented as relative loss variation (RLV) Nakagami | 17.10% | 2379% | 355%
. . . . Frequency: 3.9 GHz

= The Goodness of Fit (GoT) suggest the lognormal distribution D] kS o] i | WIE

. . . . . Log-norm: 0L.17% 20.76% 5.06%

being the highest match percentage with big margins from the u&fﬁ?ﬁ” f]]aL?'- :4_.ﬁr.;_ <001

others. Weal | <01% | 1698% | 284

Nakagami 6.72% 19.42% 24.22%
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RESULT: SMALL-SCALE FADING

* Cumulative Density Function (CDF) of the small-scale fading.
* Represented as relative loss variation (RLV)

= The Goodness of Fit (GoT) suggest the lognormal distribution
being the highest match percentage with big margins from the

others.
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(GOODNESS OF FIT FOR SMALL-SCALE FADING (3;)

Frequency: 2.4 GHz
Distribution Chi MLE
Log-normal | 84.41% | 24.68% | 92.19%
Rayleigh 0.09% 15.4% 0.29%
Rician 0.09% 15.4% 0.29%
Weibull 14.41% | 23.33% | 5.81%
Nakagami 1.012% | 21.19% | 1.42%

Frequency: 5.9 GHz
Distribution KS Chi MLE
Log-normal | 70.43% | 23.14% | 68.81%
Rayleigh 0.01% 15.73% | 3.713%
Rician 0.01% 15.73% | 3.73%
Weibull 24.58% | 23.39% | 15.50%
Nakagami 4906% | 22.02% | 8.22%
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RESULT: COMPARING LARGE-SCALE AND SMALL-
SCALE FADING
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RESULT: SMALL-SCALE FADING AT 2.4 GHZ AND

5.9 GHZ

= Small-scale fading distributions for both frequencies
appear to be similar to each other.

= Two-sample KS test demonstrates a close correlation
between the small-scale fading components s at 2.4 GHz

and 5.9 GHz

SMALL-SCALE FADING (53:) TWO-SAMPLE-KS TEST

KS p-value
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CONCLUSION

Presented the propagation characteristic of narrowband signals at 2.4 GHz and 5.9 GHz in the
intra-vehicle wireless channels.

Various channel parameters have been extracted from the received signal power measurements.
Our measurement has shown the similarity of small-scale fading component at 2.4 GHz and 5.9 GHz

Multipath fading has a significant impact on the path loss performance of narrowband signals
compared to the attenuation-related loss which has a varied relationship with the free-space loss
depending on the operating frequency chosen.

Small-scale fading is much more influential than large-scale fading on path loss in this environment.
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