Performance Analysis of NASA Deep Space Communications Systems – Expectations and Lessons Learned

Timothy Pham
Jet Propulsion Laboratory
California Institute of Technology

Copyright 2020 California Institute of Technology. Government sponsorship acknowledged
Outline

1. Deep space communications systems
2. Performance analysis processing
3. Expectations vs. lessons learned
1. Deep Space Communications System
An Instrument of Space Science Research

• Answer key scientific questions such as
 – Are we alone in the universe?
 – How did the universe start?

• Support robotic missions
 – Explorations of the Moon, Solar system bodies and their moons
 • e.g., LRO, STEREO, Magellan, Mars rovers, Juno, Cassini, New Horizons, Voyager
 – Astrophysics studies of exoplanets, cosmic evolution
 • e.g., Kepler, TESS, SIRTF, JWST

• Support emerging human exploration
Science Missions Exploration

Upcoming Events

2013
- Sep: LADDEE Launch/OI Moon
- Oct: Juno FB Earth
- Nov: MRO Launch
- Dec: MAVEN Launch

2014
- Jan: Rosetta Wake-up
- Feb: Dawn Ceres
- Mar: New Horizons/Pluto
- Apr: Rosetta/Philae SL Chu-Ger.
- May: Rosetta/Philae SL Chu-Ger.
- Jun: Rosetta/Philae SL Chu-Ger.
- Jul: Rosetta/Philae SL Chu-Ger.
- Aug: Rosetta/Philae SL Chu-Ger.
- Sep: Juno
debut
- Oct: New Horizons
- Nov: Deep Impact
- Dec: Hayabusa 2 Launch

2015
- Jan: Exomars-TGO Launch
- Feb: Exomars TGO
- Mar: InSight Launch
- Apr: Juno
- May: New Horizons
- Jun: New Horizons
- Jul: New Horizons
- Aug: New Horizons
- Sep: New Horizons
- Oct: New Horizons
- Nov: New Horizons
- Dec: New Horizons

2016
- Jan: Exomars-TGO Launch
- Feb: Exomars TGO
- Mar: InSight Launch
- Apr: Juno
- May: New Horizons
- Jun: New Horizons
- Jul: New Horizons
- Aug: New Horizons
- Sep: New Horizons
- Oct: New Horizons
- Nov: New Horizons
- Dec: New Horizons

2018
- Jan: Exomars TGO
- Feb: Exomars TGO
- Mar: InSight
- Apr: Juno
- May: New Horizons
- Jun: New Horizons
- Jul: New Horizons
- Aug: New Horizons
- Sep: New Horizons
- Oct: New Horizons
- Nov: New Horizons
- Dec: New Horizons

2020
- Jan: Exomars Rover
- Feb: Exomars Rover
- Mar: Exomars Rover
- Apr: Exomars Rover
- May: Exomars Rover
- Jun: Exomars Rover
- Jul: Exomars Rover
- Aug: Exomars Rover
- Sep: Exomars Rover
- Oct: Exomars Rover
- Nov: Exomars Rover
- Dec: Exomars Rover
Current & Future JPL Missions Development

Planetary Missions

Operational
- Mars Odyssey (2001)
- Mars Reconnaissance Orbiter (2006)
- Juno (2011)
- Curiosity (2012)
- InSight (2018)

Formulation / Development
- Mars (2020)
- Psyche / DSO (2022)
- Europa Clipper (NLT 2025)

Astrophysics Missions

Operational
- Two Voyagers (1977)
- WISE 2009 (Restarted for NEOWISE 2013)
- NuSTAR (2012)
- HAWC+ on SOFIA (2016)
- Cold Atom Laboratory (2018)

Formulation / Development
- SPHEREX (2023)
- NEOSM (2025)
- WFIRST Coronagraph (2025)
- CASE (2028)
- ASTHROS (2023)
Deep Space Communications Networks

- International space agencies
 - NASA, ESA, JAXA, etc.
 - Large aperture antennas (30-70 m)
 - Mission support
 - Mostly network centric
 - With some cross support
- Interplanetary spacecraft communications
 - Telemetry, Tracking and Command (TTC)
 - Science (Radio Science, Radar, Very Long Baseline Interferometry)
Challenge - Long Distance, Extreme Low Power

- Long distance communications
 - Lunar missions (0.002 AU) to Voyager at 140 AU

Received power is inversely proportional to the square of the distance.

\[P_r = \frac{P_t G_t A_e}{4\pi R^2} \]

- LEO: ~400 km
- GEO: ~35,786 km
- Lunar Distance: ~382,500 km
- Mars Distance: ~225,000,000 km

\[P_r = \sim1 \text{ millionth} \]
\[P_r \text{ from LEO} \]
\[P_r = \sim1 \text{ ten thousandth} \]
\[P_r \text{ from LEO} \]

\[P_r = \sim3 \text{ trillionths} \]
\[P_r \text{ from LEO} \]

D. Abraham, Working Toward More Affordable Deep Space Cubesat Communications: MSPA and OMSPA, https://www.dropbox.com/sh/fx8auva239g0wx9/AADMzWa7wgXpi0KmnoFk2rgaa/D2-Abraham?dl=0&preview=ISSC2016_WorkingTowardAffordableCommunications_URS257550.pptx#
Technical Focus in Deep Space Communications

• Low-power communications require:
 – Large antenna with maximum G/T
 • Cryo-cooled LNA
 • Listen only vs. diplexed
 – Modulation & coding optimized for low power regime
 • Modulation: BPSK, QPSK
 • Coding: Convolutional, Reed Solomon, Concatenated, Turbo, Low-density parity check
 • Special operation:
 – MFSK for EDL
 – Beacon for long duration flight
 – Maximum EIRP for spacecraft emergency mode
Antenna Arraying to Aid Really Low Signal

- A way to enhance antenna aperture
 - Routinely used by Voyager, Spitzer, New Horizons
- Downlink array
 - 34-m/70-m arraying
 - Polarization combining
- Uplink array (R/D capability)
 - Gain proportional to N^2 instead of N (as with downlink)

Ref.: Vilnrotter, Uplink Array Concept Demonstration with the EPOXI Spacecraft, IEEE Aerospace, 2009
Maximizing Data Return via Adaptive Data Rate

- Adjusting data rate per available link margin during the pass
 - More important at higher operating frequency
 - Steeper curves
 - Higher performance with continual adjustment of data rate
 - Requiring more capable flight system
High Performance Coding

- Trading complexity (with lower processing rate) to gain better Eb/No performance
 - Within 1 dB of AWGN channel capacity
 - Convolutional, Reed Solomon, Concatenated, Turbo, and Low-Density Parity Check codes

2. Performance Analysis Processing
Monitor Data Capture

Data Production

Antenna
Receiver
Transmitter
...
Other Equipment

Network M&C

Performance Analysis

Data Capture
Data Analysis
Results
Key Processing Functions
Key Metrics of Interest

- G/T (Gain/System Noise Temperature)
- Operating link margin
- Data accountability
- Frequency stability
- Link setup time
- Resource utilization, e.g., WAN bandwidth
- Etc.
Performance Dashboard

<table>
<thead>
<tr>
<th>Dashboards</th>
<th>years</th>
<th>year 2019</th>
<th>year 2020</th>
<th>raw</th>
<th>query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70m</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Accountability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler Accountability</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Telemetry Accountability</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranging Utilization</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td>raw</td>
</tr>
<tr>
<td>Command Utilization</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td>raw</td>
</tr>
<tr>
<td>Antenna Pointing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conscan</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>QQCCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Quantity Accountability</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Quality Accountability</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telemetry Latency (Timely)</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telemetry Latency (Complete)</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Gap (Continuity)</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Noise Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNT</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler Noise</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Radio Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allan Deviation</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Precal Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Acquisition Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Acquisition (nmolog)</td>
<td>2014, 2015</td>
<td>2016, 2017</td>
<td>2018</td>
<td>2019 1</td>
<td>2 3 4 5 6 7 8 9 10 11 12 2020 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Signal Acquisition (MIA)</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Dashboard – Telemetry Link Margin

Telemetry Link Margin Performance Analysis Dashboard Jan 2020

TVA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Average	TVD					
SP2-40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SP2-79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TESS-455	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TESS-695	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TESS-1052	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THC-219	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THC-545	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GSR-337	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GSR-323	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DOY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Average	TVD					

Legend
- **Link Margin (dB)**:
 - < 0.0
 - 0.0 - 0.5
 - 0.5 - 2.0
 - 2.0 - 4.0
 - 4.0 - 6.0
 - > 6.0

DOY
- 2020 Jan
- 2020 Feb
- 2020 Year
- 2020

Source
- NASA Jet Propulsion Laboratory
- California Institute of Technology
Sample - Key Metrics Within a Pass

DSN Performance Analysis

Year 2020 DOY 1 DSS 65 SCID 92 rawdata formatted nmclg

Symbol SNR: DCU/92 Min 1.1 Avg 15.9 Max 25.2 Sdev 2.7 Link Margin 16.9 dB Threshold -0.7 dB

Lock: Reset Scale

P/N: Reset Scale

NASA Jet Propulsion Laboratory
California Institute of Technology
Sample – Key Metric Within a Pass

- **SNT** - Reset Scale. (Select the area to zoom)
- **Bitrate & Symbol Rate** - Reset Scale
- **Pointing Chart** - Reset Scale

![Graphs and charts depicting various data metrics, including SNT, bitrate, symbol rate, and pointing charts.](image)
3. Expectation vs. Lessons Learned
Observations

• Some metrics monitoring are easy to process
 – Data accounting, WAN bandwidth usage
• Some metrics require moderate accounting logics
 – Service pre-cal time
• Some metrics require lots of logics
 – System noise temperature
Easy-to-Process Metrics

- **Data Accounting**
 - # of telemetry frames successfully decoded/ # of expected frames downlink by spacecraft
- **WAN bandwidth usage**
 - Aggregated data flow / Line capacity
Metrics with Moderated Accounting

- Pre-track setup time
 - Account for possible idle time in sequence of
 - Putting equipment into a link
 - Calibrating equipment, e.g. transmitter
 - Safety paging prior to moving antenna
 - Moving antenna to on-point

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T2a</th>
<th>T2b</th>
<th>T2c</th>
<th>T2d</th>
<th>T2e</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

T1	Time connection log opened
T2	Time pre-cal TDN started
T2a	Time of 'The start block is now running' message.
T2b	Time of 'Block "Cal Transmitter" is waiting for input' safety page message
T2c	Time 'Block "Cal Transmitter" received input' message
T2d	Time of 'Block "CNF Antenna" is waiting for input' safety page message
T2e	Time of 'Block "CNF Antenna" received input' message
T3	Time of "Move Antenna to Point' block is now running' message
T4	Time of antenna ‘COMPLETED. RESM TRK’ message
T5	Time antenna ‘On-Point’ message

If (T2 – T1) ≤ 10 minutes, connection Pre-Cal time = (T5 – T1) – (T4 – T3)
If (T2 – T1) > 10 Minutes, connection Pre-Cal time = (T5 – T2 + 5 minutes) – (T4 – T3)

If (T2a – T2) > 10 minutes, subtract (T2a – T2 – 5 minutes) from the above
If (T2c – T2b) > 1 minute, subtract (T2c – T2b – 1 minute) from above
If (T2e – T2d) > 1 minute, subtract (T2e – T2d – 1 minute) from above
Metrics Require Extensive Accounting

- G/T - Key parameter to monitor in comm system
 - Especially in deep space communications
- Gain (G) not measurable in typical spacecraft tracking pass
 - Leaving SNT (T) as monitored parameter available
Example - SNT Characterization

- SNT – dependent on many factors
 - Antenna pointing elevation
 - Listen-only vs. listen & transmit (diplexed)
 - Signal SNR
 - Not too weak, not too strong
 - Contribution from planetary body
 - Distinction of lunar orbiters
 - Weather effect, e.g., rain, heavy cloud
 - Erroneous reported measurements
 - Set to predicted or fixed value
 - Outdated noise diode calibration
Relative SNT Monitoring

- Identify anomalous trend on one antenna vs. the rest
Expectations

- Nominal behavior
Unexpected Observations

- Higher than expected

- Lower than expected

[Graphs showing DSN Performance Analysis with data points for SNT and K^* for different dates.]
Unexpected Observations

- Sudden jump in mid pass
Unexpected Observations

- Inconsistent data from same spacecraft and same antenna

Delta=3.4 K

Delta=11.7 K
Approach Taken for SNT Analysis

- Exclude missions with high SNR
- Exclude lunar orbiters
- Exclude data with fixed SNT
- Group data in the same configuration (listen-only vs. diplexed)
- Exclude data with fast changing, high variation
Results Before Exclusions

DSN SNT Performance Analysis Dashboard for X Band Nov 2019 Threshold SNT cd=90 +/- 2 K

<table>
<thead>
<tr>
<th>DOY</th>
<th>DSS</th>
<th>% red</th>
<th>% purple</th>
<th>total pass</th>
<th>SNT diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td>DSS</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>1</td>
<td>69%</td>
<td>(61)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>306</td>
<td>2</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>307</td>
<td>3</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>308</td>
<td>4</td>
<td>61%</td>
<td>(19)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>309</td>
<td>5</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>310</td>
<td>6</td>
<td>61%</td>
<td>(22)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>311</td>
<td>7</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>312</td>
<td>8</td>
<td>61%</td>
<td>(23)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>313</td>
<td>9</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>314</td>
<td>10</td>
<td>61%</td>
<td>(24)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>315</td>
<td>11</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>316</td>
<td>12</td>
<td>61%</td>
<td>(23)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>317</td>
<td>13</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>318</td>
<td>14</td>
<td>61%</td>
<td>(21)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>319</td>
<td>15</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>320</td>
<td>16</td>
<td>61%</td>
<td>(19)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>321</td>
<td>17</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>322</td>
<td>18</td>
<td>61%</td>
<td>(17)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>323</td>
<td>19</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>324</td>
<td>20</td>
<td>61%</td>
<td>(15)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>325</td>
<td>21</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>326</td>
<td>22</td>
<td>61%</td>
<td>(13)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>327</td>
<td>23</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>328</td>
<td>24</td>
<td>61%</td>
<td>(11)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>329</td>
<td>25</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>26</td>
<td>61%</td>
<td>(9)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>331</td>
<td>27</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>332</td>
<td>28</td>
<td>61%</td>
<td>(7)</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>333</td>
<td>29</td>
<td>0%</td>
<td>(0)</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>334</td>
<td>30</td>
<td>61%</td>
<td>(5)</td>
<td>11%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Legend:
- SNT cd=90 -2: >SNT cd=90 - 2
- SNT cd=0 -2 SNT cd=90+2: >SNT cd=0 - 2
- SNT cd=0: >SNT cd=0
- Fix Value/bad SNT

Graph:
- Oct 2019 vs Dec 2019: Average SNT vs 810.5 reference
Results Before and After Exclusions

The image shows a comparison of data before and after exclusions in the context of DSN SNT Performance Analysis Dashboard for X Band Nov 2019 +/- 2 K. The table and graph indicate changes in performance metrics such as red, purple, pass, and SNT diff. The legend explains the symbols used in the graph, which tracks temperature (°K) against DOY (Days of Year). The data is indicated by various markers such as DSS14, DSS15, and DSS63, among others.
Lessons Learned

• Monitor data from operational systems has large variation compared to a well-calibrated data set
• Data cultivation, with subject expertise, is essential in system performance analysis
• Data visualization is important for observations of large data sets