On the Effectiveness of Minisum Approval Voting in an Open Strategy Setting: An Agent-Based Approach

Joop van de Heijning, Stephan Leitner, and Alexandra Rausch

Joop van de Heijning
Digital Age Research Center
University of Klagenfurt
johannes.vandeheijning@aau.at
Resume

• **PhD student** 2019-
 – University of Klagenfurt
 Digital Age Research Center

• **MSc Computational Science** 2015-2019
 – University of Amsterdam

• **BSc Computer Science** 2012-2015
 – Open University Netherlands
Agenda

- Open Strategy
- Research Gap and Research Question
- Methodology
- Results
- Conclusion
Open Strategy (OS)

• Rising research interest (Seidl, Von Krogh, and R. Whittington, 2019)
• Defined as
 – Inclusive
 – Transparent
 – (social) IT enabled (Tavakoli, 2015)
• Better-performing strategies (Sailer, Schlagwein, and Schoder, 2018)
Research Gap and Research Question

- Lack of experimental evidence
- How do
 - the number of strategy-making participants
 - the level of an organizations’ complexity
affect the discovery of better-performing strategies in an OS approach?
Methodology

- Agent-based simulation, because (Leitner and Wall, 2015)
 - data
 - mathematical tractability
- Based on the NK model (Kauffman and Weinberger 1989)
 - Fitness landscapes -> performance landscapes
 - N is number of decisions, K is number of interactions
Simulation

- An organization *(the firm)*
- Stakeholders
- Diverse objectives
- Aggregation mechanism
Open Strategy as a Practice (Tavakoli, Schlagwein, and Schoder, 2017)

• Praxis:
 – cyclic strategy process
 – context
 – phases

• Practitioners:
 – participants in the praxis
 – utility

• Practices:
 – tools and mechanisms
 – minisum approval voting
Overview

practitioners
the firm, ..., stakeholders

praxis
Start $t:=1$

Preparation \rightarrow Generation \rightarrow Selection \rightarrow Implementation

$t:=t+1$
Yes

$t<T$

No

End

practices
• Preference aggregation mechanisms
• Voting procedures
Preparation phase

• Initialize
 – Firm, stakeholders and their performance landscapes according to NK framework \((N = 10)\)
 – Correlation between landscapes
 – Starting strategy
 – Communicate starting strategy to stakeholders

• Fix scenario parameters
 – Aggregation mechanisms
 – Number of stakeholders
 – Complexity
Generation phase

- Discovering and evaluating 2 alternative strategies
 - In the neighborhood of strategy in \(t - 1 \) (Hamming distance)
 - Evaluated according to expected performance (stakeholders’ landscapes)
 - Evaluation error
 - Stakeholders submit best alternative for aggregation

- Distilling alternatives to a shortlist
 - Minisum approval voting
 - Result is three best rated alternatives plus current strategy
Selection phase

- Stakeholders evaluate distilled shortlist
 - Shortlist is communicated to stakeholders
 - Stakeholders evaluate and rank alternatives on their own landscapes
 - Evaluation error

- Borda count voting
 - Allocates points based on rankings
 - Alternative with highest points wins
Implementation phase

- Implementation of the winning strategy
- Computation of associated performance in the firm’s landscape
- Track performance for analysis
- Implemented strategy becomes the current strategy in $t + 1$
Results (1)

- Moderate level of complexity ($K = 4$)
- Opening up the strategy process leads to rapid discovery of higher performing strategies
- Number of stakeholders significantly affects performance
Results (2)

- High level of complexity ($K = 7$)
- Similar patterns
- Significantly better strategies only for higher number of stakeholders
Discussion

- OS can lead to the discovery of better performing strategies
- Results are less pronounced in complex environments
- In a highly complex environment with a smaller number of participants, OS does not seem to offer this benefit
- Sensitivity analysis confirms the expectation that higher correlation among landscapes leads to higher performance
Limitations and Future Work

• Limitations
 – Complexity that might capture critical aspects of reality is eliminated
 – Stakeholders preferences are constant over time

• Future work
 – Network effects among stakeholders
 – Egalitarian vs. utilitarian aggregation
 – Further sensitivity analyses over control variables
Thank you for your attention

If you have any questions or comments, please contact me on

Joop van de Heijning
Johannes.vandeheijning@aau.at
References