



### An agent-based model of delegation relationships with hidden-action: On the effects of heterogeneous memory on performance

Patrick Reinwald, Stephan Leitner, Friederike Wall

Faculty of Management and Economics University of Klagenfurt patrick.reinwald@aau.at



### Resume

- Patrick Reinwald
  - Phd student
    - in Social sciences and Economics University of Klagenfurt, Austria
    - Master of Science in Business and Economics University of Klagenfurt, Austria
  - Bachelor of Science in Business and Economics University of Klagenfurt, Austria
  - Higher School Certificate
    Software Engineering
    Higher Technical Collage Villach, Austria



### Motivation 1

- The standard hidden-action model:
  - Describes a delegation relation between a principal and an agent
  - It covers a situation where exactly one task is delegated
  - The agent selects an effort which is not observable by the principal
  - The outcome is a product of the chosen effort and the exogenous factor
  - Both the principal and the agent individually try to maximize their utility
  - The principal tries to align the agent's goal with her goal



### Motivation 2

- Principal-agent theory makes some rather restrictive assumptions about information, individual behaviour and capabilities, e.g.,
  - Full rationality
  - Information asymmetry for specific types of information
  - Information processing capabilities
  - Limited power to explain empirical phenomena
- Our agent-based model variant of the standard hiddenaction model
  - Less "gifted" and heterogeneous agents (cognitive capacity)
  - Limited availability of information regarding the exogenous factor



# Hidden-action model

The standard hidden-action model

- Makes specific assumptions about individual behaviour and about the information available for the principal and the agent
- The optimal solution can be found in one time step (second-best solution)

Principal (P)  $\max E(U_P(x,s))$ s.t.  $E(U_A(s,a)) \ge \overline{U}$ 

 $U_P(x,s) = x - s(x)$ 

 $a \in \arg \max E\{U_A(s, a')\}$ 

$$\begin{array}{|c|} \hline \textbf{Y} \\ \textbf{Y} \\ \textbf{Y} \\ \textbf{W} \\ \textbf{W}$$

P's utility function is defined by the outcome and A's compensation

- P maximizes her expected utility subject to
  - Participation constraint
- Incentive compatibility constraint

A's utility function is defined by utility from compensation minus disutility from exerting effort



## Research agenda

#### The standard hidden-action model

- Makes specific assumptions about individual behaviour, the information available for the principal and the agent and their cognitive capacity
- The optimal solution can be found in one time step (second-best solution)

#### Agent-based model variant: adaptions

- Relax assumption regarding information of exogenous factor
  - Distribution of exogenous factor is unknown
  - P and A are able to individually learn about the exogenous factor
  - Different levels of cognitive capacity (memory)
- P can adapt the parameterization of the incentive scheme over time
- A reacts to the parameterization based on his state of information (via the selected effort levels)



# Transferring the hidden-action model 1 STANDARD MODEL AGENT-BASED MODEL

- P's information
- A's characteristics  $(U_A, \overline{U})$
- Observed outcome (x)
- Entire 'action space' (A)
- Distribution of exogenous factor

#### P's information

- A's characteristics  $(U_A, \overline{U})$
- Observed outcome (x)
- Entire 'action space' (A)
- Limited information about the environment
- P endowed with
  - Learning capabilities
  - Different levels of cognitive capacity (memory)



# Transferring the hidden-action model 2 STANDARD MODEL AGENT-BASED MODEL

#### A's information

- Observed outcome (x)
- A's private information: selected action, realized exogenous factor
- Distribution of exogenous factor

### A's information

- Observed outcome (x)
- A's private information: selected action, realized exogenous factor
- Limited information about the environment
  - A endowed with

•

- Learning capabilities
- Different levels of cognitive capacity (memory)



## Scenarios 1

- Benchmark scenario
  - Results derived from the standard hidden-action model are used as the benchmark scenario (second-best solution)
- Agent-based model parameterization
  - Principal
    - Linear utility function
  - Agent
    - Exponential utility function (risk-averse)
    - Reservation utility normalized to 0
  - Environment
    - Normal distributed
    - Standard deviation relative to optimal outcome x\* either 0.05x\* or 0.45x\* (mean always set to 0)



## Scenarios 2

- Levels of cognitive capacity for principal and agent
  - Limited cognitive capacity: 1 period
  - Moderatly limited cognitive capacity: 5 periods
  - Unlimited cognitive capacity: all historical data
- Further parameters
  - Simulation runs per scenario: 700
  - Periods per time path: 20
- Performance measure:

$$\phi_t = \frac{1}{R} \sum_{r=1}^{r=R} \frac{a_{tr}}{a*}$$

- *a*<sup>\*</sup> = 'second-best' action derived from the standard model
- *t* = timesteps;
- *r* = simulation run; *R* = total number of simulation runs
- $a_{tr}$  = action selected by the agent in timestep tand simulation run r



# Advantage in information for A



Results:

- Increase in environmental turbulence <u>decreases</u> the overall performance
- Increase in principal's memory
  - increases overall performance
  - <u>increases</u> the number of timesteps to reach a stable solution
  - <u>decreases</u> the variance of the exerted efforts (only in unstable environments)



# Advantage in information for P



Results:

- Increase in environmental turbulence <u>decreases</u> the overall performance
- Increase in agent's memory
  - <u>does not increases</u> overall performance
  - <u>decreases</u> the number of timesteps to reach a stable solution
  - <u>decreases</u> the variance of the exerted efforts



mA = Agent's memory mP = Principal' s memory

# Summary

- The results suggest that:
  - Gathering information about the environment is a good strategy for the principal to increase his utility
  - In turbulent environments, increasing the memory of both the principal and the agent always reduces the variance of the results -> reduces the risk of extreme deviations from the performance measure.
  - In stable environments, this effect can only be seen by increasing the agent's memory
  - Environmental turbulence has a positive effect on stability, so that a stable solution emerges earlier in turbulent environments

## Limitations and future work

- Some assumptions are carried over from the standard hidden-action model
  - P and A can process information without error
  - Availability of information about the agent for the prinicpal
- Future work
  - Deeper investigate the effects of heterogeneous memory in the hidden-action setting
  - Include cognitive biases when characterizing the principal's and the agent's cognitive capabilities
  - Limit the principal's knowledge about the characteristics of the agent



### Thank you for your attention

# For any questions or comments, please contact me: Patrick Reinwald patrick.reinwald@aau.at



# Bibliography

- B. Holmstr¨om, "Moral hazard and observability," The Bell Journal of Economics, vol. 10, no. 1, 1979, p. 74.
- R. L. Axtell, "What economic agents do: How cognition and interaction lead to emergence and complexity," The

1 1 1000

