

Christian Fabig, Michael Völker, Thorsten Schmidt Institute of Material Handling and Industrial Engineering – Technische Universität Dresden, Dresden/Germany

Provision of Model Parameters for Capacity Planning of Aircraft Maintenance Projects: A Workload Estimation Method based on Enterprise Resource Planning Data

12th International Conference on Advances in System Simulation (SIMUL 2020) Porto, Portugal - October 18 – 22, 2020

Presenter - Christian Fabig

- studied Industrial Engineering (M.Sc.) at the Technische Universität Dresden, Germany
- Research Assistant at Technische Universität Dresden (since 2011)
- Research interests:
 - Production Planning and Control (PPC) in multi-project manufacturing,
 - robust scheduling,
 - Discrete-Event Simulation (DES),
 - Enterprise Resource Planning (ERP) systems

Contact:

Dipl.-Wi.-Ing. Christian Fabig

Technische Universität Dresden Institute of Material Handling and Industrial Engineering Dresden, 01062, GERMANY

Tel.: +49 351 463 32584

E-Mail: christian.fabig@tu-dresden.de Internet: http://tu-dresden.de/mw/tla

Agenda

- 1. Problem Description
- 2. Quantitative Analysis of Maintenance Workloads in Aircraft MRO
- 3. Workload Estimation Method
- 4. Case Example
- 5. Real-life Application
- 6. Conclusion

Problem Description

Capacity planning of aircraft Maintenance, Repair and Overhaul (MRO)

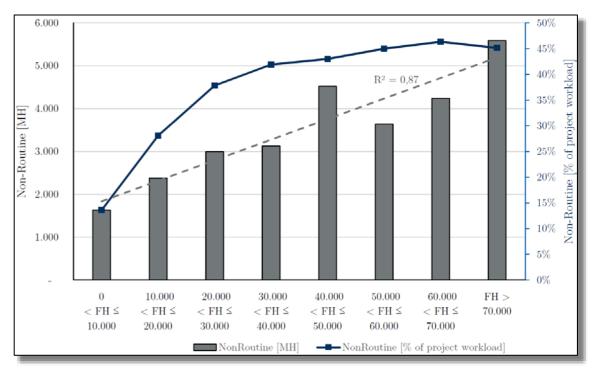
- workloads are stochastic in nature
 - estimates of the sum of working hours of (yet unknown) associated work plan activities
 - corrective maintenance ("non-routine") is a significant part of MRO projects and becomes known during project execution
- data of historical projects can assist the capacity planning process
 - gathered within Enterprise Resource Planning (ERP) system
 - requires (company-specific) classifications
- in order to provide model input, ERP systems data are found to have shortcomings
 - ambiguous classifications (e.g. project types), non-use of industry standards (e.g. aircraft zoning), outdated work centers, ...
 - manual data preparation possible, but cumbersome (especially on a daily basis)

Simulation-based planning systems

- require consistent models (here: Multi-Mode Resource-Constrained Project Scheduling Problem, MRCMPSP)
- gaps between model capabilities and its practical application

Objective 1
to quantitatively analyze
the capacity planning
problem in aircraft MRO

Objective 2 **to propose an ERP-based workload estimation method**



Quantitative Analysis of Maintenance Workloads

- project workload diverges greatly (from 1,000 man-hours to 55,000 man-hours) project classification needed
- corrective maintenance ("non-routine") is between 14 56% of project workload
 - non-routine increases throughout the service life of an aircraft
 - aging aircraft (40,000 FH or more) comprise of approximately 45% non-routine

Event Type	# of projects	Project workload	Routine	Non- Routine	
	[-]	[MH, median]	[% of project workload]	[% of project workload]	
COMPONENTCHANGEENGINES	4	464	56%	44%	
COMPONENTCHANGEGEARS	29	659	75%	25%	
MODIFICATIONAVIONICS	4	718	67%	33%	
CHECKA	5	1.103	64%	36%	
REPAIRSTRUCTURE	13	1.512	47%	53%	
CHECKB	23	6.659	56%	44%	
CHECKC	54	8.159	44%	56%	
MODIFICATIONCABIN	28	13.010	65%	35%	
CHECKD	20	16.612	54%	46%	
MODIFICATIONSTRUCTURE	17	23.450	86%	14%	
MODIFICATIONPTOF	4	55.210	64%	36%	
Overall (median)	201	6.641	62%	38%	

Maintenance actions and origin of workloads in aircraft maintenance projects.

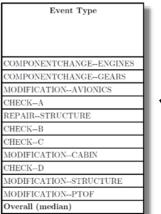
Median of non-routine workload by age of aircraft

Workload Estimation Method

- method consists of
 - a set of data mining procedures based on aircraft maintenance data stored in an ERP system
 - procedures to transform and map operation data by means of rule-based data wrangling
- allows for configuration and selection of historical projects to analyze by maintenance managers
- results consolidated in a workload distribution matrix
- ERP system interface to a discrete-event simulation software implemented
 - workload distribution matrix,
 - project network,
 - aircraft zones
 - skills, resources, and resource availabilities

A/P Airframe & powerplant system AIM Aircraft interior maintenance E Engineering ERI Electric & avionic systems FRL Outsourced services KM Painting & Composites NDT Non-destructive testing QS Quality inspection (general) STR Structural mechanics	Skill code	Description
E Engineering ERI Electric & avionic systems FRL Outsourced services KM Painting & Composites NDT Non-destructive testing QS Quality inspection (general)	A/P	Airframe & powerplant systems
ERI Electric & avionic systems FRL Outsourced services KM Painting & Composites NDT Non-destructive testing QS Quality inspection (general)	AIM	Aircraft interior maintenance
FRL Outsourced services KM Painting & Composites NDT Non-destructive testing QS Quality inspection (general)	E	Engineering
KM Painting & Composites NDT Non-destructive testing QS Quality inspection (general)	ERI	Electric & avionic systems
NDT Non-destructive testing QS Quality inspection (general)	FRL	Outsourced services
QS Quality inspection (general)	KM	Painting & Composites
	NDT	Non-destructive testing
STR Structural mechanics	QS	Quality inspection (general)
	STR	Structural mechanics
TP Work preparation	TP	Work preparation

Major	Major	Description
zone	subzone	
100	-	LOWER THIRD OF FUSELAGE
	110	RADOME - NOSE CONE TO FR0
	120	MAIN AVIONICS COMPARTMENT
	130	LOWER DECK FORWARD CARGO COMI
	140	CENTER WING BOX
	150	LOWER DECK AFT CARGO COMP.
	160	LOWER DECK BULK CARGO COMP.
	170	AFT CABIN UNDERFLOOR COMP.
	190	BELLY FAIRING, AIR CONDITION COME
200	-	UPPER TWO THIRDS OF FUSELAGE
300	-	REAR FUSELAGE SECTION
400	-	POWER PLANT NACELLES & PYLONS
500	-	LEFT WING
600	-	RIGHT WING
700	-	LANDING GEARS & GEAR DOORS
800		DOORS



200003276 200003276 001

200003276 0014



> = 200e 500/600

Removal com

• = 20ne 700

Where:

- W_{ikc} median workload in network activity i for skill k
 of workload category c, in [MH],
- W_{ic} median workload in network activity i of workload category c, in [MH],
- W_{kc} median workload for skill k of the workload category c, in [MH].

Structure of the workload distribution matrix and considered classifications of event types, network activities, skills, and aircraft zones

Case Example

- Airbus A380 cabin modification event
- workload distribution matrix for routine and non-routine workloads has been obtained analyzing five historical projects
- roughly 700 work centers defined in the ERP system were mapped to relevant skills by maintenance managers
- resulting workload distribution matrix
 - total "routine" workload is estimated at 8,915 MH (64 %)
 - total "non-routine" workload is estimated at 4,960 MH (36 %),
 - corresponds to the workload characteristics of a "typical" cabin modification (see former slides)

te	gory	Routine":	Skills k									_
	les	L	Los	l'ess		l		lawa	1	1	1	1
,	Vorg.	Kurztext Vorgang	A/P	AIM	E	ERI	FRL	KM	QS	STR	TP	Summ
-	0041	INSTALLATION - ZONE 400	244	6	0	5	0	0	7	0	0	262
-	0065	ROUTINEWORK & SERVICING - ZONE 5	30	0	0	0	0	4	1	0	0	35
-	0060	SYSTEM CHECKS - OTHERS	49	45	0	20	0	0	90	0	0	204
-	0017	REMOVAL & CLEANING - ZONE 700	96	0	0	1	0	0	1	0	0	98
-	0052	INSPECTION - ZONE 700	55	1	0	1	1	1	3	0	0	62
1	0071	MODIFICATION - ZONE 500/600	2	0	0	0	0	0	0	0	0	2
١	0042	INSTALLATION - ZONE 500/600	149	0	0	2	0	35	1	0	0	187
ı	0066	ROUTINEWORK & SERVICING - ZONE 7	19	0	0	0	0	0	1	0	0	20
┥	0018	REMOVAL COMPONENTS FOR SHOP	0	0	0	0	0	0	0	0	0	0
ı	0055	ENGINE WASH	7	0	0	0	0	0	1	0	0	8
ı	0072	MODIFICATION - ZONE 700	4	0	0	0	0	0	0	0	0	4
ı	0043	INSTALLATION - ZONE 700	83	0	0	0	0	1	2	0	0	86
ı	0056	ENGINE RUN	12	0	0	0	0	0	11	0	0	23
	0031	ROUTINEWORK & SERVICING	1	4	0	11	0	0	1	2	0	19
	0032	MODIFICATION	0	4	0	24	0	1	0	4	0	33
	0036	INSTALLATION	3	1	0	1	0	0	1	0	0	6
	0045	FINAL PHASE	36	2	0	5	0	0	12	0	0	55
			0	0	0	0	0	0	0	0	0	0
			2.412	3.850	0	1.329	6	338	498	482	0	8.915

Example of a workload estimation matrix of a cabin modification (above: impressions of cabin modification at a German aircraft MRO provider)

Conclusion

Summary:

- In aircraft maintenance projects approx. 40% of workload is corrective and becomes known after project start.
- Order operations of completed projects can be utilized for proper workload estimation and provision of consistent model parameters.
- Classifications of maintenance event types, skills, aircraft locations, and project workflow in ERP system.
- Integrated data wrangling and assignment method has been implemented. Adequate level of detail and can be defined by 'rules'.
- In case examples, the resulting workload distribution could be validated using expert surveys. Interface from ERP system to a simulation-based capacity planning software has been created.

Future investigations

- Solving the underlying MRCMPSP of aircraft MRO through discrete-event simulation (DES)
- Use of DES to assist a daily production planning and control routine of a third-party aircraft MRO provider

Thank you for your attention

Dipl.-Wi.-Ing

Dipl.-Wi.-Ing. Christian Fabig

Technische Universität Dresden Institute of Material Handling and Industrial Engineering Dresden, 01062, GERMANY

Tel.: +49 351 463 32584

E-Mail: christian.fabig@tu-dresden.de Internet: http://tu-dresden.de/mw/tla

The authors gratefully acknowledge the financial support by the Federal Ministry for Economic Affairs and Energy of Germany (BMWi) in the project MRO21 (project number 20X1714C).

