RUL Prediction for Cold Forming Production Tooling

Wim De Mulder 1 Haije Zijlstra 2 Alessandro Di Bucchianico 1

wim.demulder@ugent.be

1Eindhoven University of Technology, Eindhoven, The Netherlands

2Philips, Drachten, The Netherlands
Resume of the presenter

- **Current position**
 - Postdoc at the Eindhoven University of Technology (The Netherlands)

- **Previous positions**
 - Postdoc at the Norwegian University of Science and Technology (Norway)
 - Scientific researcher at KU Leuven (Belgium)
 - Scientific researcher at Ghent University (Belgium)

- **Research experience**
 - Machine learning
 - Bioinformatics
 - Statistics
Outline

1. Introduction
2. Data collection and feature extraction
3. Cluster analysis
Purpose of the paper

- Contents of the paper
 - Work-in-progress contribution
 - Description of some results of the Prophesy project on predictive maintenance
- Goal of the Prophesy project
 - Collaboration with Jaguar Land Rover and Philips
 - Paper restricts to the Philips case
- Data set
 - Force-signals at different angles during the forming process of some metal part
- Specific purpose
 - Remaining useful lifetime (RUL) prediction
 - Cf. next slide
 - What is remaining number of die hits before breakdown?
Work-in-progress contribution

- Reason why work in progress
 - No times of failure are currently available for Philips use case
 - Consequently, only unlabelled data and no RUL prediction for predictive maintenance possible
 - Considered alternative: cluster analysis

Predictive maintenance

- Data-driven process of predicting when operational equipment may fail
- Idea is that maintenance should be performed as far in the future as possible
- Purpose: reducing maintenance costs
- Predicted output variable by predictive maintenance method: RUL
 - How long is the machine expected to continue to run without failure?
Description of the use case

Philips
- Development of rotary shavers, beard trimmers, hairdryers, epilators, vacuum cleaners, SENSEO coffeemakers, etc.
- Employs 2000 people
- Multiple production lines take care of cold forming metal parts
- Prophesy project is dedicated to a single production line

Tooling maintenance
- A production run for the tool maintenance is triggered by production because of:
 - Production run finished.
 - Pre-defined lifetime threshold reached.
 - Product quality issue or tool malfunction.
Figure: Global overview of the use case.
Figure: Some technical details of the use case.
Data set

- Force-signal as registered during the cold-forming operation
- During one stroke of the cold forming press, the cutting force is stored at 500 measurement points
 - Measured by a sensor manufactured by United Electric Controls
- These 500 measurement points correspond to force-signals at angles ranging from 50 degrees to 110 degrees in steps of 0.12 degrees
- At a normal production rate, 1 stroke is stored every 60 seconds
- 13 production runs are eligible to be used as training data
As there are 500 input variables, it is necessary to perform a dimensionality reduction.

Four features were extracted:

1. Variable 1: the 90% percentile force at angle 71.72 degrees.
 - The 90% percentile is taken over time windows consisting of 251 time points.

2. Variable 2: the Area Under the Curve (AUC) of the forces between 70 and 75 degrees.

3. Variable 3: the 90% percentile force at 79 degrees.

4. Variable 4: the AUC of the forces between 78 and 80 degrees.
Cluster analysis (1)

- Reminder: no failures present
- Alternative: unsupervised cluster analysis of the 13 production runs
- Cluster analysis is performed using k-means
 - Clustering is performed for each of the 4 feature variables
 - Optimal number of clusters is found to be 2, using cluster validation measures
Cluster analysis (2)

<table>
<thead>
<tr>
<th>Production run</th>
<th>Variable 1</th>
<th>Variable 2</th>
<th>Variable 3</th>
<th>Variable 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure: Cluster index for each production run for each of the variables.
Cluster analysis (3)

- Previous table shows the following observations:
 - Production runs 1 to 4 are similar.
 - Production runs 5 to 8 are similar.
 - Production runs 9, 10, 11 and 13 are similar.
 - Production runs 10 to 13 are similar.

- Last two observations could also be rephrased as saying that production runs 9 to 13 are similar, with some dissimilarity between production runs 9 and 12.

- Are these results useful for RUL production?
 - Requires to analyze whether production runs 1 to 4, production runs 5 to 8, and production runs 9 to 13 share certain properties that might be related to the 'health' of the involved mechanical parts
 - If so, this knowledge can be used to predict the RUL.
Conclusion

- Work-in-progress contribution with a use case from a cold forming production tooling process
- Collaboration with Philips in the context of EU project Prophesy
- Purpose of the project is to predict the remaining useful lifetime of certain tools that come with high maintenance costs
- Currently no failure observations available in given data set
- Unsupervised cluster analysis shows that production runs can be grouped
- If different clusters can be linked to different properties related to remaining lifetime, this can be used to predict RUL in a later stage