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Necessity of smarter inspection and
maintenance of civil infrastructure

@ Number of Bridges by Construction Year
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Earthquake data is
obtained from 1,742
observatories
deployed all over
Japan

The average station
to station distance Is
about 25km

However, it Is not
enough for installation
for all cities

http://www.bosal.go.jp/
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Real-time monitoring of each town In
kyo Is desirable
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Benefits of Installing earthquake sensors
to all the houses and buildings

 Sltuation just after the
earthquake can be mwmﬁ '
grasped in a single Emergency

house by the local Management
government

 The data can be used In
decision-making of
Crisis management




Beneflts of mstalllng earthqguake sensors
to all the houses and bundlngs
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| Beneflts of installing earthquake sensors

to all the houses and buildings
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o
floor, liquefaction of the ground can be
detected

 The data has a significant effect on.the real
estate price



Benefits of Installing earthquake sensors
to all the houses and buildings

L CK! B
_ - . cne oo & .
= 700 1| mem EERELR - [
LK o0 |L|-e-EEBRBRT o }
- P
| 500 W sz
. % -~
, : fice T
| 300 '.l_ I'"J_QFGJI
200 2 oy
- B
100
0 'm’:mt ||||||||||||||||||||||||||
1969 1974 B84 994 1999 04 009

earthquake data over a lifetime of house can
be stored

e This data affects the price of used.houses



| Earthquake Sensors in all Wi-Fi Hotspot
1n Japan

* For wide-spread deployment of sensors,
collaboration with the nation-wide chain
stores that offers a Wi-Fi hotspot is effective

e Just placing a sensor that can be connected
to Wi-Fi, 1t Is possible to collect earthquake

data easlily
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The need for accurate time information

« Accurate time information as well as location
Information are necessary to analyze the data for
structural health monitoring of buildings and civil
iInfrastructures

* Time synchronization between the sensors in a wide
area Is not easy
— GNSS signal cannot be used in the houses and buildings
— The wire and wireless communication is limited

e |t Is desirable that the sensor itself has autonomously
accurate time information



Autonomously Keeping
Accurate Time Information
Chip Scale
Atomic Clock

copyright (C) 2020 Narito Kurata. All rights reserved.



Chip Scale Atomic Clock (CSAC) is
avallable

« Comparison among various atomic clocks and
osclillator

Cesium Rubidium Crystal

atomic clock atomic clock oscillator

Time for
50,000 years 1000 years 1000 years One day
1-sec. delay

Size 0.1 m3 1000 cm? 17 cm? 10 mm?3 '

Power
S50 W Several 10 W 120 mW 10 pW
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Development of sensor device with CSAC

e |t consists of Main control unit with CSAC and
Sensor unit with three axis MEMS acceleration
sensor and three external analog sensor input

Interface

[ Main control unit ] [ Sensor unit ]

Chip scélé atic ) § MEMS
clock (CSAC) ) acceleration sensor




Development of sensor device with CSAC

* Wireless communication unit has been built using
a Raspberry Pi

.........

[ Main control unit ] [ Sensor unit ]

e s

L e ! | B T aspberry Pi
- . 2 Model B:
IV H LAY I
[ Chip scale atomic ] [ MEMS ] Ethernet; 3G
clock (CSAC) | acceleration sensor an d W|'F| are

Main control unit and sensor unit available



Application to Actual Building and Bridges

 The developed new practical devices were installed
In an actual building and seismic observation
started in October 2017.

 The building Is a three-story reinforced concrete
building built in Tsukuba, Ibaraki, Japan.
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Visualization of structural health evaluation by
sensor devices with CSAC

copyright (C) 2020 Narito Kurata. All rights reserved.



Problem

 The use of autonomous high-precision time-
synchronization sensor devices with CSAC
solves the problem of time synchronization
between a large number of installed sensors In
buildings and civil infrastructures.

 However, mass supply and price reduction of
CSAC have not yet been realized.




Development

o Although Global Navigation Satellite System
(GNSS) time information is generally only
avallable outdoors, we designed a system
capable of using GNSS time information
iIndoors.

 We further developed a sensor device able to
receive indoor GNSS time Iinformation and to
add high-accuracy time information to
measured data.



Indoor GNSS time Iinformation delivery system

GNSS signals are received on the roof of a building, and
delivered as broadcasting into the building by using the
transmission path of an existing system, such as a
common antenna TV system or cable TV system.

A transmitter Is installed at any location from which the
delivery of GNSS signals into the building Is desired,
and the signals are sent.

By mounting a GNSS receiver on each sensor device
and implementing a mechanism to add high-accuracy
time stamps to measured data, it becomes possible to
collect data sets whose high-accuracy time
synchronization is ensured from indoors



System configuration
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e An indoor G\ISS time informafion delivery system consists of
D1 on the roof, D2 inside the building, and D3 at the terminal (a
transmitter for delivering GNSS time information indoors).



System configuration
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D1 receives a signal from the GNSS satellite,
frequency-converts the synchronized time signal, and
transmits it into the building.



System configuration
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* The transmission path of a CATV system or cable TV
system in a building is used to deliver indoors high-
accuracy. times synchronized with GNSS satellites.



System configuration
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e D2 receives time signals from D1 and demodulates

them into high-accuracy time synchronization signals
(PPS signals).



System configuration
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D3 receives data from D2, adjusts the timing, and
sends time information to a sensor device.




System configuration
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 Time information sent from D3 Is received by a sensor

device to add high-accuracy time information to
measured data.



System configuration
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By using a hub, it Is possible to connect multiple D3s
under D2.



Development of sensor device able to receive
Indoor GNSS signals
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System configuration
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 The sensor device consists of such components as a
GNSS receiver, FPGA, CPU, memory, local storage,
and network interface.



System configuration
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e The FPGA controls the sensor's measurement while

generating time stamps using GNSS signal-based
ultra-high accuracy time information.



System configuration
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 Measured data Is stored in the memory, then sent to the
network via Ethernet or wireless communication.

o Data can be collected using a wired or wireless method.



Specifications of sensor device

GNSS module FURUNO/GF-8801
Frequency 1555.983-1610.202 MHz

Center frequency 1597.926 MHz

FPGA/CPU Zyng2 (CPU Dual-core ARM Cortex-A9)
RAM SDRAM 512Mbyte

ROM Serial-FLASH 128Mbyte X 2
Power supply 14 W (Typ.)

Size 102 (W) X 172.5 (D) X 40 (H)
Weight 1.65 kg




Development of sensor device able to receive
iIndoor GNSS signals

e A sensor device normally consists of components,
such as a CPU that controls measurement, an analog
sensor, analog filter, A/D converter, memory, and
network interface.

* |n this development, to reduce the risk that noise will
enter during measurement, a sensor device was
developed with a digital sensor mounted on it instead
of an analog sensor.



Specifications MEMS digital acceleration sensor

Model ADXL355
Measurement direction 3
Maximum acceleration (= G) 2

Outside dimensions (mm) 6 X6 X 2.1
Consumption current (LA) 200

Stand-by power consumption (LA) 21
Sensitivity 256,000 LSB/G = 8%
Noise characteristics 22.5 uG/NHz
ADC Resolution 20 Bits
Operating temperature Range (° C) -40 - +125




Overall view of experimental system
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Indoor GNSS time information delivery system

e Indoaor GNSS time information delivery system
consists of D1, D2, and D3. The time signal was
generated by the GNSS simulator and input to D1.
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Sensor device and shaking table
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Sensor device and shaking table
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 Two sensor devices and a servo acceleratlon sensor for

comparison were fixed to the shaking table, and the same
vibration was applied to compare the results of measurement.




Sensor device and shaking table
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 Vibrations were applied to the horizontal direction of sensor
device # 1 and the vertical direction of sensor device # 2.



Input swept sine waves
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e Input waves: 0.1-2.0 Hz and 2-10 Hz swept sine waves
o Sampling frequency for each sensor device: 100 Hz



Fourier amplitude spectrum ratios of sensor device
#1 compared to servo acceleration sensor
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Compared to the servo acceleration sensor, the amplitude of the sensor
device #1 was flat in the 0.1-2.0 Hz and 2—10 Hz bands, showing that
the MEMS digital acceleration sensor mounted in the sensor module has
good performance in terms of components in the horizontal direction.



Fourier phase spectrum ratios of sensor device #2
against sensor device #1

Phase lag(degree)
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Phase delays within 0.001 seconds are plotted in dotted
Ines. Time synchronization within 0.001 seconds could
pe realized between the sensor modules.




Seismic wave Input experiment
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 The results in the three cases matched, confirming
that the developed sensor device has a good
measurement performance, equivalent to that of the
servo acceleration sensor.



Conclusion

* For the purpose of application to the structural
health monitoring of buildings and civil
Infrastructures, or to earthquake observations,
development of a sensor device that adds high-
accuracy time information to measured data by
using a system to deliver indoor Global
Navigation Satellite System (GNSS) time
Information was reported.



Conclusion

* A system for delivering GNSS time information
Indoors was demonstrated.

* Development of a sensor device with a
mechanism for receiving GNSS signal-based
time information was explained in detall.

* Results of a shaking table experiment
conducted to evaluate the basic performance of
the sensor device were presented.



Conclusion

 Measurement performance and time
synchronization function of the developed
sensor device were verified.

* Developed sensor device could be applied to
such automatic operations as structural health
monitoring of buildings and civil infrastructures
and earthquake observations.

 Verification using an actual building is now
scheduled to be carried out.
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