# Properties of Semantic Coherence Measures Case of Topic Models

Author: Pirkko Pietiläinen University of Oulu pirkkoptlnn@gmail.com





# A short resume: Some of the citations to my former work and a selection

- Feedback in information retrieval.
   Annual Review of Information Science and Technology by A Spink, RM Losee
- Machine learning: applications in expert systems and information retrieval dl.acm.org
   by R Forsyth, R Rada
- Abstracts of Articles in the Information Retrieval Area Selected by Gerard Salton ACM SIGIR Forum https://doi.org/10.1145/24634.1096830 by Gerard Salton
- QUESTQUORUM A New Online Assistance tool from ESA-IRS (European Space Agency -Information Retrieval Services)
   by Sergio D'Elia, Pier Giorgio Marchetti

# Coherence Measures – Topic Models

Applications of Topic Models in NLP:

IR, Classification, Content Analysis, Data Mining, Sentiment Analysis, Social Media Analysis, Word Sense Induction

# Topics of size 10 and k=6

| son            | country         | father | ancient       | god    | king    | great          | family  | name          | daught-<br>er  |
|----------------|-----------------|--------|---------------|--------|---------|----------------|---------|---------------|----------------|
| album          | band            | song   | music         | series | film    | releas-<br>ed  | video   | featur-<br>ed | movie          |
| educa-<br>tion | univer-<br>sity | law    | natio-<br>nal | state  | public  | govern<br>ment | elected | council       | college        |
| system         | type            | engine | sys-<br>tems  | can    | using   | use            | used    | stan-<br>dard | struct-<br>ure |
| war            | army            | forces | force         | navy   | naval   | british        | troops  | military      | fleet          |
| park           | located         | road   | area          | league | country | south          | city    | railway       | club           |

# Measures used in prominent investigations include:

- ◆ NPMI, PMI
- cosine, Jaccard, Dice
- **♦** UCI
- UMass
- WordNet-based

Mixed results +

New Measures in 2015: Palmetto

C\_v best against human ratings

#### 16 measures: 10 WN+ 6 Palmetto

Topic Model: LDA + GloVe

 Corpus: 12 random samples from Wikipedia, 3 sizes

 Results are given as means of the 12 samples

# Results: C\_v is different

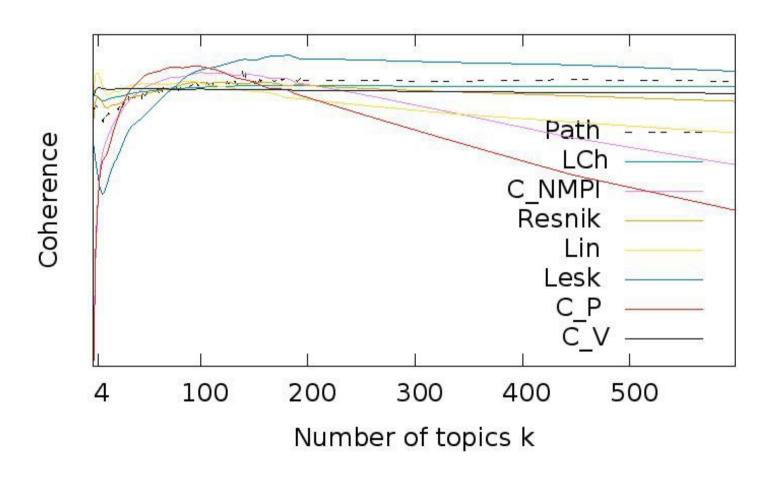
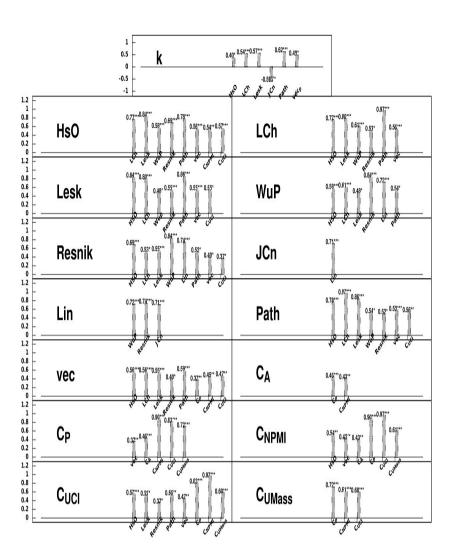




TABLE I. k-values of three highest coherence values for 12 corpora (a - dig) given by 16 coherence measures ( $H_{SO} - C_{UMASS}$ ).

|      | HsO        | LCh      | Lesk       | WuP        | Resnik        | JCn            | Lin           | Path     | ****     | ****      |                | <i>C</i>       |               |                   |                  |                    |
|------|------------|----------|------------|------------|---------------|----------------|---------------|----------|----------|-----------|----------------|----------------|---------------|-------------------|------------------|--------------------|
|      |            | 179      | 112        |            |               |                |               | 179      | vec_p    | 116       | C <sub>A</sub> | C <sub>P</sub> | $C_{ m V}$    | C <sub>NPMI</sub> | C <sub>UCI</sub> | C <sub>UMass</sub> |
| A    | 95<br>112  | 450      | 112        | 23         | 23            | $\frac{7}{2}$  | <u>6</u><br>7 | 450      | 178      | 102       | 9              | 138            | <u>7</u><br>9 |                   | 172              | <u>6</u><br>25     |
|      | 102        | 139      | 174        | 7          | <u>6</u><br>7 | $\frac{23}{6}$ |               | 139      | 178      | 102       |                | 95             | 21            | <u>95</u><br>181  |                  |                    |
| 1.20 |            |          |            | 6          |               |                | 23            | 100      |          |           | 12             | 01 -           |               |                   | 162              | <u>23</u>          |
| A20  | 164        | 146      | 143        | 7          | 7             | 6              | 7             | 143      | 124      | 36        | 12             | 99             | 4             | 95                | 95               | 77                 |
|      | 19         | 143      | 164        | 8          | 6             | <u>59</u>      | 6             | 146      | 144      | 87        | <u>10</u>      | 64             | 16            | 99<br>50          | 77               | 64                 |
|      | 90         | 132      | 173        | 10         | 12            | 7              | 93            | 144      | 146      | 60        | 7              | 151            | 24            | <u>59</u>         | 183              | 62                 |
| A10  | 175        | 187      | 93         | 37         | 37            | 8              | 37            | 187      | 129      | 4         | 20             | 51             | <u>6</u>      | 51                | 120              | 32                 |
|      | 93         | 145      | 164        | 93         | 93            | 93             | 8             | 145      | 163      | 6         | 51             | 102            | 76            | 88                | 51               | 52                 |
|      | 37         | 175      | 137        | 175        | 112           | 4              | 93            | 175      | 4        | 129       | 24             | 114            | 80            | 120               | 88               | 61                 |
| В    | 150        | 198      | 198        | 108        | 62            | 58             | 90            | 198      | 250      | 85        | 69             | 69             | 5             | 69                | 69               | 11                 |
|      | 196        | 147      | 164        | 89         | 90            | 54             | 62            | 147      | 92       | 89        | 7              | 11             | 6             | 81                | 158              | 10                 |
|      | 117        | 161      | 196        | 109        | 89            | 52             | 89            | 161      | 280      | 135       | 6              | 46             | 22            | 158               | 11               | 26                 |
| B20  | 170        | 143      | 129        | 33         | 33            | 33             | 33            | 149      | <u>5</u> | 67        | 10             | 101            | <u>5</u>      | 66                | 101              | 10                 |
|      | 171        | 149      | 149        | 8          | 109           | <u>25</u>      | 109           | 143      | 153      | 60        | 4              | 66             | 12            | 101               | 102              | 9                  |
|      | 190        | 187      | 171        | <u>5</u>   | 63            | 48             | <u>5</u>      | 170      | 181      | 142       | 14             | 10             | 6             | 95                | 95               | <u>25</u>          |
| B10  | <u>73</u>  | 127      | 127        | <u>73</u>  | <u>73</u>     | 116            | 31            | 127      | 4        | 4         | <u>73</u>      | 11             | 14            | 80                | 80               | 10                 |
|      | 146        | 146      | 181        | 64         | 105           | 31             | 73            | 147      | 5        | 135       | 23             | 80             | 7             | 88                | 68               | 11                 |
|      | 175        | 175      | 164        | 105        | 175           | 21             | 105           | 146      | 135      | 6         | 48             | 10             | 20            | 68                | 88               | 12                 |
| C    | <u>140</u> | 7        | <u>140</u> | 7          | 140           | 32             | 70            | 7        | 144      | 133       | 9              | 68             | <u>5</u>      | 107               | 107              | 26                 |
|      | 155        | 8        | 193        | 70         | 113           | 104            | 98            | <u>5</u> | 143      | 106       | 17             | 107            | 11            | <u>140</u>        | <u>140</u>       | 41                 |
|      | 113        | <u>5</u> | 192        | <u>140</u> | 70            | 80             | <u>140</u>    | 8        | 160      | 132       | 12             | 40             | 28            | 126               | 126              | 35                 |
| C20  | 50         | 153      | 188        | 11         | 11            | 11             | 11            | 133      | 132      | 111       | 8              | 140            | 5             | <u>157</u>        | <u>157</u>       | 33                 |
|      | <u>157</u> | 133      | 180        | 50         | 48            | 50             | 50            | 166      | 86       | <u>67</u> | 13             | <u>67</u>      | 9             | 140               | 96               | 8                  |
|      | 144        | 166      | 144        | 48         | 50            | 10             | 48            | 153      | 133      | 152       | 14             | 81             | 7             | 96                | 140              | 14                 |
| C10  | 66         | 164      | 66         | 6          | 12            | 121            | 6             | 157      | 64       | 37        | 21             | 42             | <u>4</u>      | 21                | 21               | 29                 |
|      | <u>69</u>  | 189      | 103        | 17         | 140           | <u>4</u>       | 12            | 189      | 117      | 48        | 9              | 9              | 8             | <u>16</u>         | 22               | 19                 |
|      | 90         | 145      | 185        | 152        | <u>16</u>     | 28             | 89            | 164      | 25       | 99        | 8              | 112            | 5             | 19                | <u>69</u>        | 74                 |
| D    | 100        | 166      | 188        | 6          | 6             | 6              | 6             | 166      | 135      | 83        | 113            | 103            | 12            | 92                | 92               | 17                 |
|      | 149        | 7        | 191        | 7          | 10            | 183            | 7             | 143      | 185      | 146       | <u>9</u>       | 113            | 113           | 113               | 189              | 19                 |
|      | 188        | 6        | 100        | 9          | 7             | 54             | 8             | 188      | 198      | 167       | <u>8</u>       | 32             | 103           | 162               | 196              | 24                 |
| D20  | 97         | 116      | 107        | 48         | 48            | 4              | 48            | 144      | 7        | 72        | 12             | 78             | 41            | 109               | 109              | 14                 |
|      | 118        | 144      | 144        | <u>73</u>  | <u>73</u>     | 48             | 73            | 116      | 29       | 106       | <u>4</u>       | 73             | 39            | <u>73</u>         | <u>73</u>        | <u>7</u>           |
|      | 107        | 169      | 184        | 20         | 91            | 91             | 46            | 169      | 197      | 91        | 16             | 55             | 40            | 100               | 100              | 16                 |
| D10  | 90         | 69       | 77         | 22         | 77            | 32             | 36            | 69       | 26       | 15        | 12             | 69             | 7             | <u>57</u>         | 58               | 5                  |
|      | 79         | 141      | 79         | 36         | 90            | 36             | 12            | 280      | 39       | 45        | 6              | 57             | 8             | <u></u>           | 57               | 64                 |
|      | 93         | 67       | 69         | 12         | 67            | 29             | 22            | 141      | 41       | 57        | 18             | <u></u><br>58  | 47            | 69                | 20               | 67                 |
|      |            |          |            |            | _             |                |               |          |          |           |                |                |               |                   |                  |                    |



## Human ratings

Table V. Pearson and Spearman correlations between four human ratings (MC - Simlex nouns) and 16 coherence measures (  $HsO-C_{\rm UMASS}$ ). NOTE: Here values **without any** asterisks are statistically highly significant with P<0.001. And \*\*: P<0.01, and \*: P<0.05, -: P>0.05 and n.d. means no data.

|              | HsO  | LCh   | Lesk | WuP   | Resnik | JCn  | Lin   | Path  | vec_p | vec  | $C_{A}$ | $C_{ m P}$ | $C_{\mathbf{V}}$ | $C_{ m NPMI}$ | $C_{ m UCI}$ | $C_{ m UMass}$ |
|--------------|------|-------|------|-------|--------|------|-------|-------|-------|------|---------|------------|------------------|---------------|--------------|----------------|
| MC(P)        | -    | 0.57* | _    | 0.55* | 0.59   | _    | 0.53* |       | 0.60  | 0.88 | _       | 0.79       | _                | 0.77          | 0.67         | -              |
| MC(S)        | _    | 0.58* | 0.60 | 0.55* | 0.68   | _    | 0.56* | 0.56* | 0.70  | 0.90 | -       | 0.81       | 0.65             | 0.82          | _            | -              |
| RG(P)        | 0.54 | 0.60  | 0.44 | 0.53  | 0.61   | _    | 0.54  | 0.54  | n.d.  | n.d. | -       | 0.75       | _                | 0.77          | 0.71         | -              |
| RG(S)        | 0.49 | 0.56  | 0.55 | 0.51  | 0.55   | _    | 0.46  | 0.54  | n.d.  | n.d. | -       | 0.85       | 0.50             | 0.84          | 0.83         | 0.45           |
| Lau(P)       | 0.19 | -     | 0.15 | 0.18  | 0.25   | 0.33 | 0.29  | -     | n.d.  | n.d  | 0.38    | 0.61       | 0.31             | 0.55          | 0.51         | 0.28           |
| Lau(S)       | 0.25 | -     | 0.19 | 0.20  | 0.31   | 0.39 | 0.37  | -     | n.d.  | n.d. | 0.39    | 0.52       | 0.33             | 0.49          | 0.46         | 0.26           |
| Simlex n.(P) | 0.35 | 0.52  | 0.25 | 0.45  | 0.41   | 0.35 | 0.51  | 0.51  | 0.28  | 0.35 | _       | 0.24       | 0.13             | 0.17          | 0.18         | -              |
| Simlex n.(S) | 0.36 | 0.49  | 0.31 | 0.47  | 0.41   | 0.51 | 0.51  | 0.48  | 0.22  | 0.33 | -       | 0.22       | 0.21             | 0.16          | 0.18         | _              |

#### **Conclusions**

- The method used here is based on large data, is consistent and statistically tested
- WordNet-based and Palmetto-measures differ
- ◆ Large samples, different sizes + statistical testing → sample size to produce statistically significant results : 8000 documents / 2 million words
- Optimal number of topics k>100, except C\_v

#### Further work

- Have a closer look at the human ratings studies and investigate why different data sets differ so much in respect of these 16 measures studied here
- Anonymous reviewer's suggestion: Try to find out what could explain the differences and similarities of the measures
- Data and R-code used in this study are available here.

#### Properties of Semantic Coherence Measures -Case of Topic Models

Author: Pirkko Pietiläinen University of Oulu pirkkoptlnn@gmail.com





Hello everybody!

This presentation is about measures, which are used in topic modeling.

Why topic modeling?

Because it has many applications in connection with the natural language processing: like information retrieval, classification, content analysis, data mining, sentiment analysis, social media analysis, word sense induction. There are more and more large volumes of data/text, and one of the methods to analyze them is topic modeling.

### A short resume: Some of the citations to my former work and a selection

- Feedback in information retrieval.
   Annual Review of Information Science and Technology by A Spink, RM Losee
- Machine learning: applications in expert systems and information retrieval dl.acm.org
   by R Forsyth, R Rada
- Abstracts of Articles in the Information Retrieval Area Selected by Gerard Salton ACM SIGIR Forum https://doi.org/10.1145/24634.1096830 by Gerard Salton
- QUESTQUORUM A New Online Assistance tool from ESA-IRS (European Space Agency -Information Retrieval Services)
   by Sergio D'Elia, Pier Giorgio Marchetti

#### Coherence Measures – Topic Models

Applications of Topic Models in NLP:

IR, Classification, Content Analysis,
Data Mining, Sentiment Analysis,
Social Media Analysis, Word Sense Induction

This presentation is about measures, which are used in topic modeling.

Why topic modeling?

Because it has many applications in connection with natural language processing: like information retrieval, classification, content analysis, data mining, sentiment analysis, social media analysis, word sense induction. There are more and more large volume of data/text, and one of the methods to analyze them is topic modeling.

| Topics of size 10 and k=6 |                 |        |               |        |         |                |         |               |                |  |  |  |  |  |
|---------------------------|-----------------|--------|---------------|--------|---------|----------------|---------|---------------|----------------|--|--|--|--|--|
| son                       | country         | father | ancient       | god    | king    | great          | family  | name          | daught-<br>er  |  |  |  |  |  |
| album                     | band            | song   | music         | series | film    | releas-<br>ed  | video   | featur-<br>ed | movie          |  |  |  |  |  |
| educa-<br>tion            | univer-<br>sity | law    | natio-<br>nal | state  | public  | govern<br>ment | elected | council       | college        |  |  |  |  |  |
| system                    | type            | engine | sys-<br>tems  | can    | using   | use            | used    | stan-<br>dard | struct-<br>ure |  |  |  |  |  |
| war                       | army            | forces | force         | navy   | naval   | british        | troops  | military      | fleet          |  |  |  |  |  |
| park                      | located         | road   | area          | league | country | south          | city    | railway       | club           |  |  |  |  |  |

An output from a Topic model is typically sets of 5 or 10 or 15 words. We use 10 words.

An important parameter is the number of topics, k. This example has 6 topics.

And to measure how well a model works we use measures of the coherence of these topics.

The more similar or related the topic words are, the more coherent a topic is.

# Measures used in prominent investigations include:

- ◆ NPMI, PMI
- cosine, Jaccard, Dice
- ◆ UCI
- UMass
- WordNet-based

Mixed results +

New Measures in 2015: Palmetto

C\_v best against human ratings

There are many measures, which can be seen in the literature of the field.

One reason to do this investigation was the mixed results obtained in different studies.

Also there was recently introduced a new set of measures, which was especially designed to measure the topic coherence.

16 semantic coherence measures were selected to this study.

10 WordNet-based measures and 6 Palmetto measures.

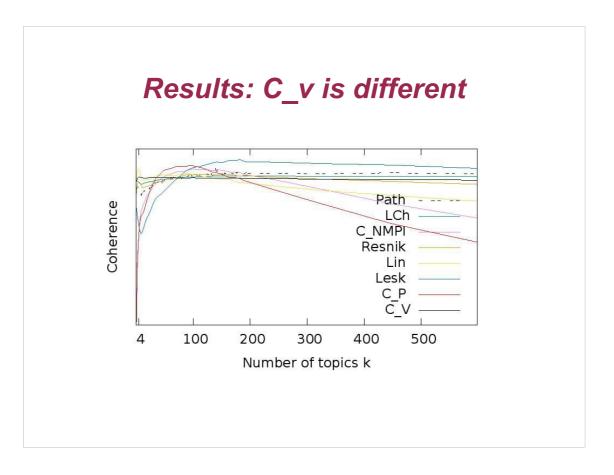
One detail we follow throughout this presentation is the Palmetto measure C\_v, which has gained the highest human ratings of coherence in the evaluations done by the designers of the Palmetto measures.

#### 16 measures: 10 WN+ 6 Palmetto

◆ Topic Model: LDA + GloVe

Corpus: 12 random samples from

Wikipedia, 3 sizes


 Results are given as means of the 12 samples

Our experimental set up was:

Latent Dirichlet Allocation (LDA) improved by Global Vectors.

Corpus was Wikipedia, from where 12 random samples was extracted, and samples had 3 different sizes

Results are given as averages of the 12 sample.

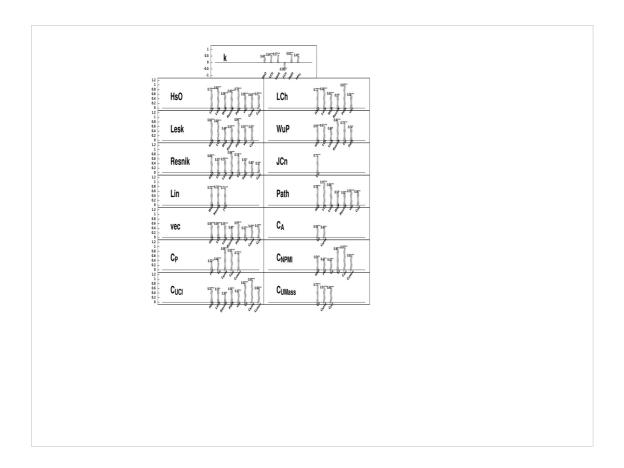


Many of the measures reach their maximum around k = 100 and even at higher k

A notable exception is C\_v, which has maximum close to k=40.

We note that measures Path and LCh behave very similarly, as is theoretically expected.

| Т   | ABLE I.  | k-VALU     | ES OF TH   | IREE HIG  | неѕт сон  | ERENCE  | VALUES  | FOR 12     | CORPORA  | A (A - D10)     | GIVEN I   | 8Y 16 CO         | HERENC           | E MEASURE           | S(HsO-C)     | UMASS).             |
|-----|----------|------------|------------|-----------|-----------|---------|---------|------------|----------|-----------------|-----------|------------------|------------------|---------------------|--------------|---------------------|
|     | HsO      | LCh        | Lesk       | WuP       | Resnik    | JCn     | Lin     | Path       | vec_p    | vec             | $C_{A}$   | $C_{\mathbf{P}}$ | $c_{\mathrm{V}}$ | $C_{\mathrm{NPMI}}$ | $C_{ m UCI}$ | $C_{\mathrm{UMas}}$ |
| A   | 95       | 179        | 112        | 23        | 23        | 7       | 6       | 179        | 116      | 116             | 14        | 93               | 7                | 172                 | 172          | 6                   |
|     | 112      | 450        | 115        | 7         | 6         | 23      | 7       | 450        | 178      | 102             | 9         | 138              | 9                | 95                  | 181          | 25                  |
|     | 102      | 139        | 174        | <u>6</u>  | 7         | 6       | 23      | 139        | 144      | 108             | 12        | <u>95</u>        | 21               | 181                 | 162          | <u>23</u>           |
| A20 | 164      | 146        | 143        | 7         | 7         | 6       | 7       | 143        | 124      | 36              | <u>12</u> | 99               | 4                | 95                  | 95           | 77                  |
|     | 19       | 143        | 164        | 8         | 6         | 59      | 6       | 146        | 144      | 87              | <u>10</u> | 64               | 16               | 99                  | 77           | 64                  |
|     | 90       | 132        | 173        | 10        | 12        | 7       | 93      | 144        | 146      | 60              | 7         | 151              | 24               | <u>59</u>           | 183          | 62                  |
| A10 | 175      | 187        | 93         | 37        | 37        | 8       | 37      | 187        | 129      | 4               | 20        | 51               | 6                | 51                  | 120          | 32                  |
|     | 93<br>37 | 145<br>175 | 164<br>137 | 93<br>175 | 93<br>112 | 93<br>4 | 8<br>93 | 145<br>175 | 163<br>4 | <u>6</u><br>129 | 51<br>24  | 102<br>114       | 76<br>80         | 88<br>120           | 51<br>88     | 52<br>61            |
| В   | 150      | 1/5        | 198        | 1/5       | 62        | 58      | 90      | 175        | 250      | 85              | 69        | 69               | 5                | 69                  | 69           | 11                  |
| в   | 196      | 198        | 164        | 89        | 90        | 54      | 62      | 147        | 92       | 89              | 7         | 11               | 6                | 81                  | 158          | 10                  |
|     | 117      | 161        | 196        | 109       | 89        | 52      | 89      | 161        | 280      | 135             | 6         | 46               | 22               | 158                 | 11           | 26                  |
| B20 | 170      | 143        | 129        | 33        | 33        | 33      | 33      | 149        | 5        | 67              | 10        | 101              | 5                | 66                  | 101          | 10                  |
| B20 | 171      | 149        | 149        | 8         | 109       | 25      | 109     | 143        | 153      | 60              | 4         | 66               | 12               | 101                 | 102          | 9                   |
|     | 190      | 187        | 171        | 5         | 63        | 48      | 5       | 170        | 181      | 142             | 14        | 10               | 6                | 95                  | 95           | 25                  |
| B10 | 73       | 127        | 127        | 73        | 73        | 116     | 31      | 127        | 4        | 4               | 73        | 11               | 14               | 80                  | 80           | 10                  |
| D10 | 146      | 146        | 181        | 64        | 105       | 31      | 73      | 147        | 5        | 135             | 23        | 80               | 7                | 88                  | 68           | 11                  |
|     | 175      | 175        | 164        | 105       | 175       | 21      | 105     | 146        | 135      | 6               | 48        | 10               | 20               | 68                  | 88           | 12                  |
| С   | 140      | 7          | 140        | 7         | 140       | 32      | 70      | 7          | 144      | 133             | 9         | 68               | 5                | 107                 | 107          | 26                  |
|     | 155      | 8          | 193        | 70        | 113       | 104     | 98      | 5          | 143      | 106             | 17        | 107              | 11               | 140                 | 140          | 41                  |
|     | 113      | 5          | 192        | 140       | 70        | 80      | 140     | 8          | 160      | 132             | 12        | 40               | 28               | 126                 | 126          | 35                  |
| C20 | 50       | 153        | 188        | 11        | 11        | 11      | 11      | 133        | 132      | 111             | 8         | 140              | 5                | 157                 | 157          | 33                  |
|     | 157      | 133        | 180        | 50        | 48        | 50      | 50      | 166        | 86       | 67              | 13        | 67               | 9                | 140                 | 96           | 8                   |
|     | 144      | 166        | 144        | 48        | 50        | 10      | 48      | 153        | 133      | 152             | 14        | 81               | 7                | 96                  | 140          | 14                  |
| C10 | 66       | 164        | 66         | 6         | 12        | 121     | 6       | 157        | 64       | 37              | 21        | 42               | 4                | 21                  | 21           | 29                  |
|     | 69       | 189        | 103        | 17        | 140       | 4       | 12      | 189        | 117      | 48              | 9         | 9                | 8                | <u>16</u>           | 22           | 19                  |
|     | 90       | 145        | 185        | 152       | <u>16</u> | 28      | 89      | 164        | 25       | 99              | 8         | 112              | 5                | 19                  | 69           | 74                  |
| D   | 100      | 166        | 188        | 6         | 6         | 6       | 6       | 166        | 135      | 83              | 113       | 103              | 12               | 92                  | 92           | 17                  |
|     | 149      | 7          | 191        | 7         | 10        | 183     | 7       | 143        | 185      | 146             | 9         | 113              | 113              | 113                 | 189          | 19                  |
|     | 188      | 6          | 100        | 9         | 7         | 54      | 8       | 188        | 198      | 167             | 8         | 32               | 103              | 162                 | 196          | 24                  |
| D20 | 97       | 116        | 107        | 48        | 48        | 4       | 48      | 144        | 7        | 72              | 12        | 78               | 41               | 109                 | 109          | 14                  |
|     | 118      | 144        | 144        | 73        | 73        | 48      | 73      | 116        | 29       | 106             | 4         | 73               | 39               | 73                  | 73           | 7                   |
|     | 107      | 169        | 184        | 20        | 91        | 91      | 46      | 169        | 197      | 91              | 16        | 55               | 40               | 100                 | 100          | 16                  |
| D10 | 90       | 69         | 77         | 22        | 77        | 32      | 36      | <u>69</u>  | 26       | 15              | 12        | 69               | 7                | <u>57</u>           | 58           | 5                   |
|     | 79       | 141        | 79         | 36        | 90        | 36      | 12      | 280        | 39       | 45              | 6         | <u>57</u>        | 8                | 58                  | <u>57</u>    | 64                  |
|     | 93       | 67         | 69         | 12        | <u>67</u> | 29      | 22      | 141        | 41       | <u>57</u>       | 18        | 58               | 47               | <u>69</u>           | 20           | <u>67</u>           |


Because maximum values of a measure is often very close to the highest and the second highest local maxima, we list here the k-values of the 3 highest values of each measure in 12 corpora.

Colored cases indicate that there are no coincidences of k with any other measure (yellow for WordNet-based measures and green for Palmetto measures), and k-values are underlined when coincidences between the measure types occur.

We note again the similarity of LCh and Path telling about consistency of our method.

C\_v and vec\_p have less coincidences with any other measures.

Data and R-code to produce the table: https://www.pp.ouluresearch.fi



Data and R-code to produce the correlations and the tests of statistical significance: https://www.pp.ouluresearch.fi

There are only few statistically significant correlation between WordNet- and Palmetto-measures. We note also that C\_v does not correlate with any other measure.

Relatively high correlation of number of topics k and some of the measures is an unexpected result.

#### **Human ratings**

Table v. Pearson and Spearman correlations between four human ratings (MC - Simlex nouns) and 16 coherence measures (  $HsO-C_{\mathrm{UMass}}$ ). NOTE: Here values without any asterisks are statistically highly significant with p<0.001. And \*\*: p<0.01, and \*: p<0.05, -: p>0.05 and n.d. means no data.

|              | HsO  | LCh   | Lesk | WuP   | Resnik | JCn  | Lin   | Path  | vec_p | vec  | $C_{\Lambda}$ | $C_{\mathbb{P}}$ | $C_{V}$ | $C_{ m NPMI}$ | $C_{\mathrm{UCI}}$ | $C_{\mathrm{UMass}}$ |
|--------------|------|-------|------|-------|--------|------|-------|-------|-------|------|---------------|------------------|---------|---------------|--------------------|----------------------|
| MC(P)        | _    | 0.57* | -    | 0.55* | 0.59   | _    | 0.53* | _     | 0.60  | 0.88 | _             | 0.79             | _       | 0.77          | 0.67               | -                    |
| MC(S)        | _    | 0.58* | 0.60 | 0.55* | 0.68   | _    | 0.56* | 0.56* | 0.70  | 0.90 | -             | 0.81             | 0.65    | 0.82          | -                  | -                    |
| RG(P)        | 0.54 | 0.60  | 0.44 | 0.53  | 0.61   | -    | 0.54  | 0.54  | n.d.  | n.d. | -             | 0.75             | _       | 0.77          | 0.71               | -                    |
| RG(S)        | 0.49 | 0.56  | 0.55 | 0.51  | 0.55   | -    | 0.46  | 0.54  | n.d.  | n.d. | -             | 0.85             | 0.50    | 0.84          | 0.83               | 0.45                 |
| Lau(P)       | 0.19 | -     | 0.15 | 0.18  | 0.25   | 0.33 | 0.29  | -     | n.d.  | n.d  | 0.38          | 0.61             | 0.31    | 0.55          | 0.51               | 0.28                 |
| Lau(S)       | 0.25 | -     | 0.19 | 0.20  | 0.31   | 0.39 | 0.37  | -     | n.d.  | n.d. | 0.39          | 0.52             | 0.33    | 0.49          | 0.46               | 0.26                 |
| Simlex n.(P) | 0.35 | 0.52  | 0.25 | 0.45  | 0.41   | 0.35 | 0.51  | 0.51  | 0.28  | 0.35 | -             | 0.24             | 0.13    | 0.17          | 0.18               | -                    |
| Simlex n.(S) | 0.36 | 0.49  | 0.31 | 0.47  | 0.41   | 0.51 | 0.51  | 0.48  | 0.22  | 0.33 | -             | 0.22             | 0.21    | 0.16          | 0.18               | -                    |
| Simiex n.(8) | 0.36 | 0.49  | 0.31 | 0.47  | 0.41   | 0.51 | 0.51  | 0.46  | 0.22  | 0.55 |               | 0.22             | 0.21    | 0.10          | 0.10               |                      |

C\_v does not show very high correlations with any of the human ratings data sets studied here.

Again LCh and Path behave vary similarly.

Further studies why different data sets give so different results needs to be studied further.

#### **Conclusions**

- The method used here is based on large data, is consistent and statistically tested
- WordNet-based and Palmetto-measures differ
- ◆ Large samples, different sizes + statistical testing → sample size to produce statistically significant results : 8000 documents / 2 million words
- ◆ Optimal number of topics k>100, except C\_v

#### **Further work**

- Have a closer look at the human ratings studies and investigate why different data sets differ so much in respect of these 16 measures studied here
- ♦ Anonymous reviewer's suggestion:Try to find out what could explain the differences and similarities of the measures
- Data and R-code used in this study are available here.