

Prof. Dr.-Ing. Hans-Joachim Hof

Technical University of Ingolstadt (current)

Vice President, Full Professor

CARISSMA Institute of Electric, Connected, and Secure Mobility (current)

Head of Research Group "Security in Mobility"

Artificial Intelligence Network Ingolstadt (current)

Member of the board

German Chapter of the ACM and Gesellschaft für Informatik (current)

Member of the board

Munich University of Applied Sciences (2011-2016)

Full Professor

MuSe – Munich IT Security Research Group (2011-2016)

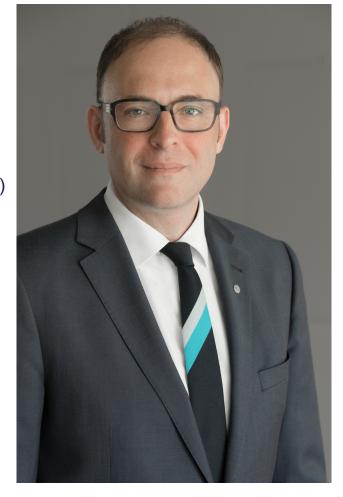
Head

пеаа

International Academy, Research, and Industry Association (2016)

Fellow

Siemens AG, Corporate Technology (2008-2011)


Research Scientist

University of Karlsruhe now Karlsruhe Institute of Technology (1996-2007)

Research staff, PhD student, student of Computer Science

Technische Hochschule Ingolstadt | Forschungsgruppe "Security for Mobility" im CARISSMA Institut Electric, Connected, and Secure Mobility | Prof. Dr.-Ing. Hans-Joachim Hof

Introduction

- Quo vadis ((ˈkwəʊ ˈvɑːdɪs)
 - Latin: from the Vulgate version of John 16:5
 - Literal: "Where are you going?"
 - In a broader sense: "what is going to happen next?"
- Outline
 - Introduction
 - Current Situation
 - Future Directions

Introduction

Comparing iPhone security and Tesla security

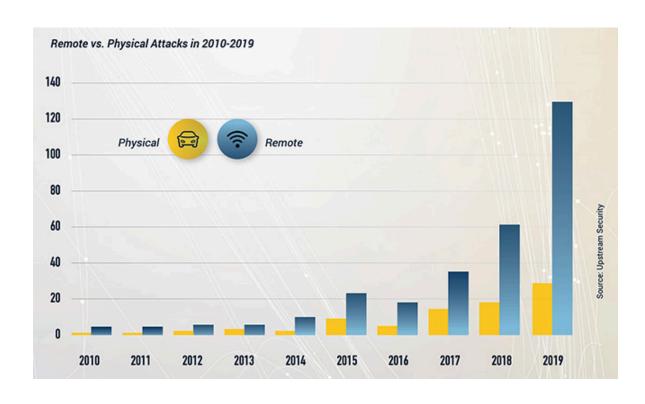
Apple iPhone 12

Bildquelle: www.apple.de

Tesla Model 3

Bildquelle: www.tesla.com

Definition

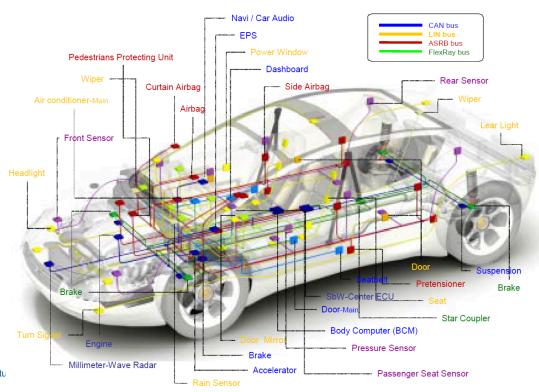

Scope of Automotive Security

- Automotive security refers to the security of vehicles as well as to the security of complex mobility systems that communicate with, supervise, or include vehicles.
- Complex mobility systems are systems of systems that facilitate the transportation of humans or goods.

Automotive Cybersecurity Report 2020 by Upstream Security

- Number of attacks
 - 605% raise since 2016(doubled from 2018 to 2019)
 - Numbers still very low
- Attack purpose
 - 57% of incidents in 2019 to disrupt business, steal property, or demand ransom
- Attack vectors
 - 30% keyless entry systems
 - 27% backend servers
 - 13% mobile apps
 - In 2019, 82% of attacks did not require physical access

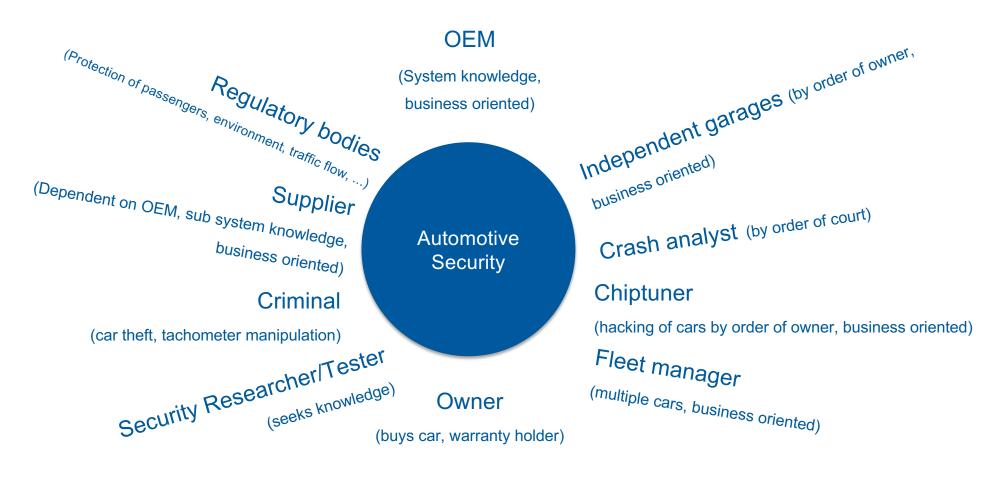
Cybersecurity in Automotive Report by McKinsey


- Report lists vulnerabilities throughout the complex mobility system
- In-vehicle vulnerabilities: Demos of access to gain local and remote access to infotainment, telematics, and CAN bus (2018)
- OEM back-end vulnerabilities:
 - Malware infected the back end, making laptops installed in police cars unusable (2019)
 - Demo of unauthorized access to door control (2015)
- Infrastructure
 - EV home chargers controlled via hacked home WiFi (2018)

Complexity

Offence-Defence-Balance Theory: To be successful, defender needs to control all vulnerabilities,
 attackers need to exploit only one vulnerability

- Modern vehicles are complex systems:
 - 150 ECUs
 - 100 Mio LOC, expected to be 300 Mio in 2030
 - Various interfaces
- Low resources of many ECUs and their sheer number make key management and hardware support hard


Œ

Emerging Standards and Regulation

- Security not very well addressed by standards yet
- Latest standards (focus on security management)
 - UNECE WP.29 (approved and published in June 2020)
 - ISO/SAE 21434 (to appear)
- Gaps concerning technical standards
- McKinsey: "Unlike in other industries, cybersecurity has remained unregulated in the automotive industry beyond general IT regulations"
 - Some countries/states lately addressed cybersecurity of cars (e.g., California)

⊡

Multiple Views on Automotive Security by Stakeholders

Black Box Software and Insufficient Security Testing

- Several suppliers that developed software, central security management sometimes missing
- Testing of software necessary, still some blackbox software
 - In 2018, 63% of OEMs and suppliers test less than half of hardware, software, and other technologies for vulnerabilities [1]
- Security engineering at supplier may be unclear
 - 30% of OEMs and suppliers do not have an established product cybersecurity program or team [1]

[1] SAE and Synopsys, "A Study of Automotive Industry Cybersecurity Practices", 2018

Technology Shifts Affects Automotive Security

Electric Cars

- Charging infrastructure extends complex mobility system (new attack vectors available)
- Additional safety critical system: battery management system

Software systems more and more unique selling point

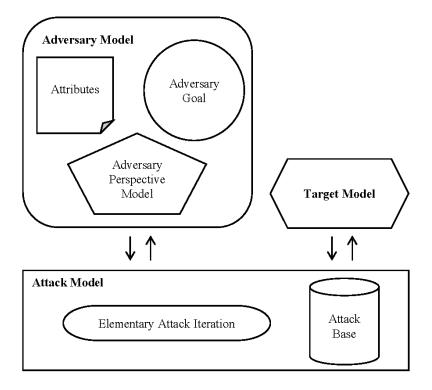
- E.g., autonomous driving, assistance systems, ...
- Increases amout of software in vehicles

Connected vehicles

Software systems use Internet services or communicate with other vehicles

Œ

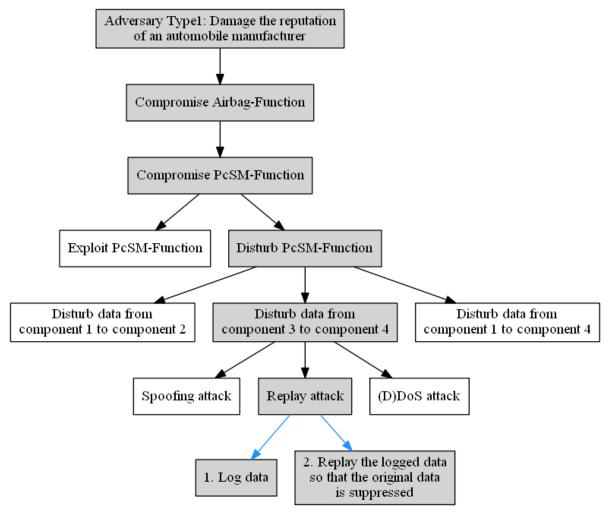
Safety and Security


- Safety engineering is an important aspect of modern automotive systems engineering
 - Well-established standards and regulations
- Security must respect safety aspects of a system
 - Requires system-wide planning
 - Chance: design security engineering similar to safety engineering

Examplary Project

Œ

Using Adversary and Attack Modelling to Improve Automotive Security


See talk of Tina Volkersdorfer on SECURWARE 2020

Example Model

•

Uses diagram similar to fault tree used in safety engineering

Œ

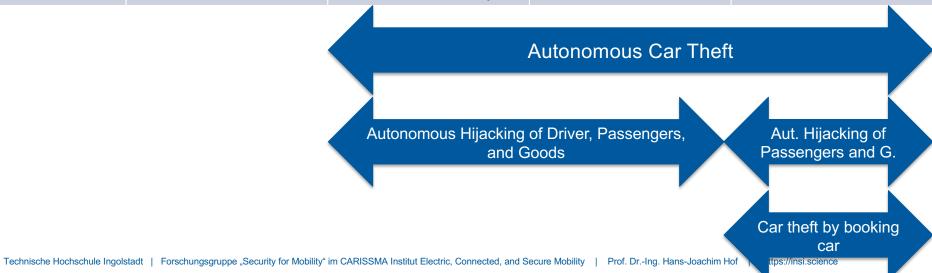
Long Product Life

- Vehicles tend to be long-living (>20 years) => Necessary to manage software for 20+ years
- Software update over the air still no default,
- Legacy system architecture does not support easy software updates

Œ

Large Scale Attacks

- Heavy reuse of software in automotive domain, sometimes low security level
- Fleets often include only a limited number of vehicle types => one vulnerability affects many vehicles
- Highly-connected fleets could be subject to attacks (see [1])
- Vehicle Security Operation Centers will be necessary for early detection and mitigation of attacks


[1] Tobias Madl, Jasmin Brückmann, Hans-Joachim Hof: "CAN Obfuscation by Randomization (CANORa)", 2nd ACM Computer Science in Cars Symposium (CSCS 2018) – Future Challenges in Artificial Intelligence & Security for Autonomous Vehicles, Munich, Germany, September 2018

News Business Cases for Hackers

Levels of Vehicle Automation based on SAE J3016:

Level 1	Level 2	Level 3	Level 4	Level 5
Drive-Assistance	Partial Automated	Conditional Automation	High Automation	Full Automation
"Feet-off"	"Hands-off"	"Eyes-off"	"Attention-off"	"Driverless"
Driver drives	Driver drives	Vehicle drives, human as backup	Vehicle drives	Vehicle drives

New System Architecture for Vehicles

- Number of ECUs will be reduced, architecture will be less distributed and more centralized
 - More complexity in software, less in hardware
 - Software security will become even more important (but security needs to be implemented on less devices)

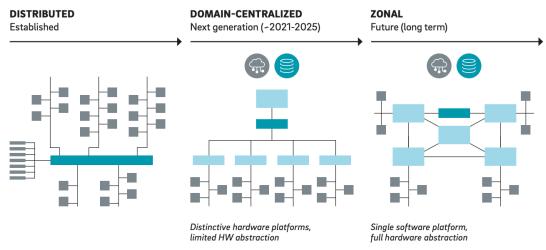
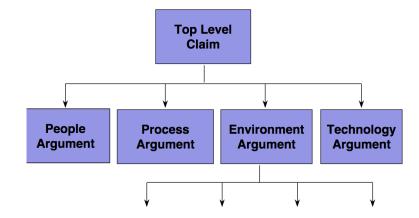


Image source: Roland Berger, "Computer on wheels / Disruption in automotive electronics and semiconductors", 2020

⊡


New System Architecture for Vehicles

- OEM will need to supply security platform
 - Including identity management, authentication, key management, encryption, ...
 - Hardware support for security
- Software updates will be possible for most systems (finally)

lefoon

Regulation and Laws

- Automotive security will likely be addressed by regulation in the near future
- In Europe, it is very likely that this will be driven by the EU
- Cybersecurity certification will be necessary for suppliers

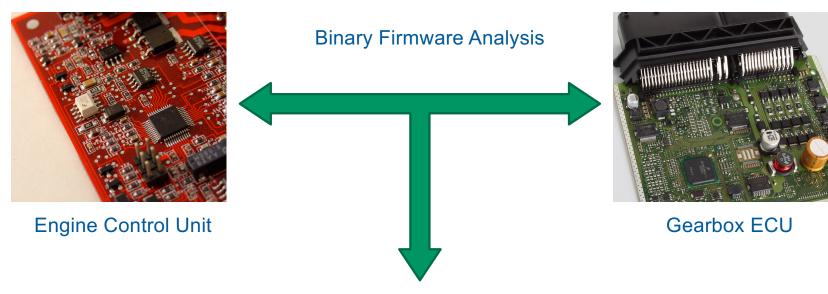
Holistic Approach to Automotive Security Engineering

- Upcoming standards and regulations will require a holistic approach to automotive security
- There will be a security platform by the OEM that need to be used by suppliers
- As in IT, many security servies will be centralized
 - Identity management
 - Single access point
 - **.**..
- 100% of software must be tested for vulnerabilities

Œ

Software Testing

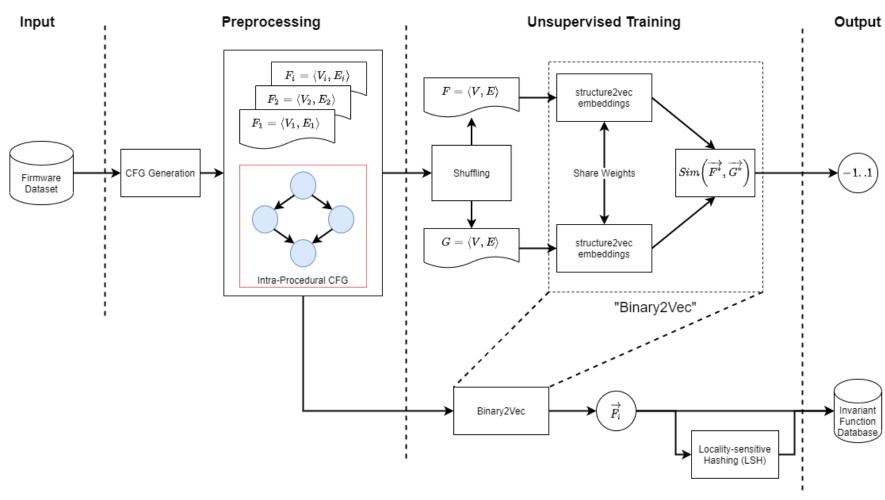
- 100% of automotive software must be tested for vulnerabilities
- More automation of testing is necessary artificial intelligence may be of help



Artificial Intelligence for Hacking and Testing Automotive Systems

- Not specific for automotive security
- However, tailored and planned systems may be more susceptible for this attack
- Research vision of my research group: Hackvisor = HACKbot + Security AdVISOR
- Hackbot: Autonomous detection of security vulnerablities
 - Autonomous creation of security tests using attacker modelling and attack modelling
 - Autonomous creation of security tests by NLP analysis of ECU specifications
 - Autonomous penetration testing
 - Autonomous manual review

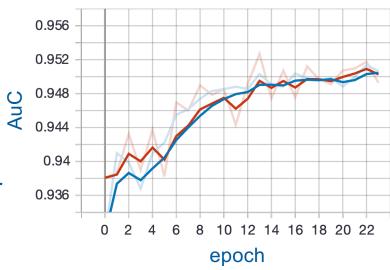
Autonomous Penetration Testing Example



- Detection of reused software blocks in automotive firmware
- Many be used to identify off-the-shelf software libraries (e.g., OSEK RTOS/AUTOSAR) to find known vulnerabilities

Preliminary Design

Technische Hochschule Ingolstadt | Forschungsgruppe "Security for Mobility" im CARISSMA Institut Electric, Connected, and Secure Mobility | Prof. Dr.-Ing. Hans-Joachim Hof |


Preliminary results

- Trained on OpenSSL Cryptography Library with different configurations
 - ARM, MIPS, x86
 - **gcc** 4.9, gcc 5.4, gcc 7.0
 - -O0, -O1, -O2, -O3
- 0.95 AUC classification performance
- Control-Flow-Graph Embeddings preserve algorithm identity over different architectures

- Run trained network on Automotive Firmware Dataset
- Generate Embeddings Dataset for commonly used software components

Summary and Outlook

- Automotive security not yet fully addressed in modern vehicles, attacks on all parts of complex mobility systems exist
- Missing legislation and (technical) standards for security in automotive domain
- Importance of automotive security will rise in the next years
 - New business models for attackers
 - Regulation will demand automotive security
 - New system architectures will shift complexity from hardware to software
- Security testing will be crucial for success, especially testing software of 3rd parties
- Automotive security will adapt many standard approaches from IT in the future

Thank you – get in contact with us Research Group "Security in Mobility"

Prof. Dr. Hans-Joachim Hof Full Professor, head of research group Vice President of Technical University of Ingolstadt > hof@thi.de

Dominik Bayerl Research Staff Automotive penetration testing, hacking, Automotive software security

Tina Volkersdorfer Research Staff Security modelling, Security test generation ima.volkersdorfer@carissma.eu

ima.volkersdorfer@carissma.e

Marco Michl Research Staff Security testing, penetration testing marco.michl@carissma.eu

Kevin Gomez Buquerin External PhD student Automotive forensics extern.kevinklaus.gomezbuquerin@thi.de

Ludwig Sabitsch External PhD student Autonomous security anti pattern detection in software

Ricardo de Andrade Visiting researcher from Universidade de São Paulo (virtuell) CAN security

Maximilian Gronau Student researcher **Automotive Software Testing**

Jakob Löw Student researcher Automotive software testing