

TOWARDS CYBERSECURITY ACT: A SURVEY ON IOT EVALUATION FRAMEWORKS

Maxime Puys, Jean-Pierre Krimm, Raphaël Collado Univ. Grenoble Alpes, CEA, LETI, DSYS, Grenoble, France Firstname. Name@cea. fr

SECURWARE 2020, Nov. 21, 2020 to Nov. 25, 2020 - Valencia, Spain

- Maxime Puys
- Research Engineer at CEA-LETI, Grenoble, France
- Ph.D in Cybersecurity (2018)
 - University Grenoble Alpes, France
- **Research Topics:**
 - Cybersecurity of industrial systems
 - Cryptographic protocol verification
 - Smart-cards security against fault attacks
 - Formal methods for cybersecurity
 - Certification process and frameworks

- Cybersecurity Act officially adopted by EU on 7th of June 2019
 - → Includes the definition of a European cybersecurity certification framework
- Cybersecurity certification framework:
 - Delivered certificates mutually recognized among European countries
 - Encourage/enforce the use of certification throughout the EU
- Three certification levels are considered:
 - Basic level → non-critical, consumer objects;
 - Substantial level → median risk:
 - High level \rightarrow critical solutions.
- Basic level is tricky due to the very wide range of products.
- Already existing framework for each levels:
 - Which one is picked? New one from scratch?

1. Survey/comparison of existing evaluation frameworks considered for basic level

2. A unified IoT evaluation framework for basic level

3. Conclusion

1. Survey/comparison of existing evaluation frameworks considered for basic level

2. A unified IoT evaluation framework for basic level

3. Conclusion

PRODUCT EVALUATION STRUCTURE

EXISTING FRAMEWORKS 1/2

- Comparison criteria (might be subjective /!\):
 - **Type of document:** Main purpose of the document (evaluation/certification, good practices, etc);
 - Targeted audience: CAB, CISO, CTO, Developers, etc;
 - **Structure of the document:** Part of the previous structure covered by the scheme;
 - Split in different security levels: If the scheme proposes different inner security levels;
 - **Technical perimeter:** Technical cybersecurity topics covered (HW, SW, web, crypto, etc);
 - Level of accuracy of the requirements: Precision of the requirements provided by the scheme;
 - Support from the community/industry.
- Existing framworks dealing with IoT:
 - ETSI-EN-303-645
 - CTIA Cybersecurity Certification Test Plan for IoT Devices
 - OWASP IoT Top Ten
 - Eurosmart IoT Device Certification Scheme
 - IoT Security Foundation Security Compliance Framework

EXISTING FRAMEWORKS 2/2

Schemes	ETSI	CTIA	OWASP	Eurosmart	IoT-SF
Type	Good practices	Certif cation	Good practices	Certif cation	Mixed
Audience	Vendors	CAB	Vendors	CAB	Vendors
Structure	Objectives Require- ments	Requirements Tests	Objectives	Complete (ongoing)	Objectives Require- ments
Levels	None	Three	None	None	Five
Perimeter	Wide	Wide	Wide	Wide	Wide
Accuracy	Generic	Generic	Low	Generic	Generic Technical
Support	World-wide	World-wide industry (mainly US)	World-wide	Sector- Specif c (mainly EU)	World-wide (mainly UK)

A UNIFIED EVALUATION FRAMEWORK FOR CONSUMER IOT

- Created during on-going discussions about the final scheme
 - Goal: Preparation of CABs before final scheme choice
- Rather than trying to predict which existing scheme to implement, find a middle-gound.
- Marketing requirement: 3 inner levels

- Target of Evaluation (TOE): Product (HW/SW) + documentations
 - Simply said: what the custommer has in hands

ID	Topic	ETSI	CTIA	OWASP
1	Password management	4.1	3.2	1
2	Keeping software up to date	4.3	3.5, 3.6	4, 5
3	Securely storing sensitive data	4.4		7
4	Minimizing exposed attack surface	4.6	5.17	2, 3, 10
5	Ensuring the initial state is secure			5, 9
6	Analyzing admin. and user guides	4.2, 4.12	4.1	8
7	Third-party components management			5
(8)	Unique reference of the device			
(9)	Resistance to known vulnerabilities			10

ID	Topic	ETSI	CTIA	OWASP
1	Password management	4.1	3.2	1
2	Keeping software up to date	4.3	4.5, 4.6	4, 5
3	Securely storing sensitive data	4.4		7
4	Minimizing exposed attack surface	4.6	5.17	2, 3, 10
5	Ensuring the initial state is secure			5, 9
6	Analyzing admin. and user guides	4.2, 4.12	4.1	8
7	Third-party components management			5
(8)	Unique reference of the device			
(9)	Resistance to known vulnerabilities			10
10	Authentication and access-control		4.3, 4.4	
11	Protection of data in transit	4.5	4.8	7
12	Data input validity	4.13		

ID	Topic	ETSI	CTIA	OWASP
1	Password management	4.1	3.2	1
2	Keeping software up to date	4.3	5.5, 5.6	4, 5
3	Securely storing sensitive data	4.4		7
4	Minimizing exposed attack surface	4.6	5.17	2, 3, 10
5	Ensuring the initial state is secure			5, 9
6	Analyzing admin. and user guides	4.2, 4.12	4.1	8
7	Third-party components management			5
(8)	Unique reference of the device			
(9)	Resistance to known vulnerabilities			10
10	Authentication and access-control		4.3, 4.4	
11	Protection of data in transit	4.5	4.8	7
12	Data input validity	4.13		
13	Personal data management	4.8, 4.11		6
14	Secure boot	4.7	5.11	
15	Protection of data at rest	4.4	5.15	6

- Context: Basic evaluation level for EU CyberAct
- Not much related works on Cyberact:
 - Quite recent directive
 - More on US/international context (NISTIR 8259)

Level	ETSI	CTIA	OWASP
1	46%	29%	90%
2	62%	47%	90%
3	85%	59%	100%

- Survey and comparison of existing frameworks:
 - ETSI, CTIA, OWASP, EuroSmart, IoT-SF
- Proposed a middle-gound evaluation scheme for ETSI, CTIA, OWASP (main contenders)
 - Idea: Allow CABs to prepare already whichever framework is chosen with minimal updates needed.
- Frameworks coverage display in Table:
 - Nice common ground but also different directions (HW, Privacy, etc).
- Perspectives: Update according discussion evolutions

