SECURING SMART HOMES USING INTRUSION DETECTION SYSTEMS

CHRISTOPH HAAR, Erik Buchmann Hochschule für Telekommunikation Leipzig E-Mail: haar@hft-leipzig.de

CHRISTOPH HAAR

- 2010-2015 Business Informatics (Bachelor) Martin-Luther-University Halle/Wittenberg, Germany
- 2015-2017 Business Informatics (Master) Martin-Luther-University Halle/Wittenberg, Germany

 Since 2018 Scientific Assistant Hochschule f
ür Telekommunikation Leipzig, Chair for Data Privacy and Security in Information Systems

AGENDA

- 1. Motivation and Objective
- 2. Research Question One
 - Method
 - Requirements
 - Results
- 3. Research Question Two
 - Method
 - Experimental Setup
 - Experimental Procedure
 - Results
- 4. Conclusion

1. MOTIVATION AND OBJECTIVE

- Botnets such as Mirai or Reaper are showing that Smart Home devices are attractive aims for attackers.
- Conventional IDS are not suitable for securing a Smart Home for several reasons.
- We consider IDS for the Smart Home by answering the following research questions:
 - 1) How can an IDS be integrated into a Smart Home operated by private users without IT-Security expertise?
 - 2) Which IDS approaches can be adapted for that purpose?

2. RESEARCH QUESTION ONE – METHOD

- To systematically approach an IDS that secures Smart Homes, we investigate the following four levels.
 - Network Segmentation
 - System Architecture
 - IT-Security Process
 - Contract Liabilities
- Our levels have been compiled from proposals to secure Smart Home networks, from well-known IT-Security concepts, and from challenges discussed in the IDS context.

2. RESEARCH QUESTION ONE - REQUIREMENTS

- Our starting point is a set of three requirements that arise from security challenges for Smart Home devices.
 - Expertise: The user does not need to possess in-depth expertise of technical internals, such as network protocols and IT-Security.
 - Separation: Smart Home devices have dedicated use cases that can be separated from others.
 - Understandability: The interaction between a user and a Smart Home device should be as understandable as possible.

2. RESEARCH QUESTION ONE - RESULT (1/4)

Network Segmentation

Figure 1: Typical Smart Home Architecture

Figure 2: Experimental Smart Home Architecture

2. RESEARCH QUESTION ONE - RESULT (2/4)

System Architecture

2. RESEARCH QUESTION ONE - RESULT (3/4)

IT-Security Process

2. RESEARCH QUESTION ONE – RESULT (4/4)

- Contract Liabilities
 - Traditional IDS
 - The manufacturer is responsible for the code.
 - The private user is responsible for everything else.

- Current IDS Approach
 - Separation: A Smart Home IDS must be able to define a distinct service. It includes all devices in the Smart Home network that are connected to the IDS.
 - Expertise: Specify the abilities of the IDS without referring to certain transmission protocols or attack names.
 - Understandability: It must be clearly communicated to the private user that an IDS does not offer a complete protection against any kinds of attack to the Smart Home.

3. RESEARCH QUESTION TWO – METHOD (1/2)

- With our experiments we will confirm that our IDS approach can be used to secure a Smart Home in practice.
- We will also find out if signature-based or anomaly-based IDS are better suited.
- We have conducted experiments with the system architecture illustrated in Figure 2.
 - The IDS is installed on a Raspberry Pi 3B that operates as a Wi-Fi Bridge between the Smart Home network (wlan1) and the Internet router (eth1).
 - The Raspberry Pi 3B is sufficient to evaluate network packets in real-time.

3. RESEARCH QUESTION TWO - METHOD (2/2)

- We have tested two different IDS:
 - Suricata:
 - realizes a signature-based detection
 - implements state-of-the-art detection algorithms
 - uses multi-core processors
 - starts with 27.000 preconfigured signatures and can be updated from a repository

- Kitsune:
 - realizes an anomaly-detection
 - implements a number of neuronal networks
 - is installed with neuronal networks and a voting mechanism that are preconfigured

3. RESEARCH QUESTION TWO – EXPERIMENTAL PROCEDURE

 Stage one: We used all four Smart Home devices normally for 60 minutes and we recorded the produced traffic.

Device	Intervall	Duration	Interactions
Amazon Dash	10 minutes	1 sec.	6
Amazon Echo	10 minutes	5 minutes	6
IP-Camera	10 minutes	2 minutes	5
Temperature	10 seconds	-	60

- Stage two: We have used nmap to perform a portscan and we recorded the produced traffic.
- Stage three: We have performed a Telnet attack and we recorded the produced traffic.

3. RESEARCH QUESTION TWO – RESULT (1/3)

- Normal use:
 - During the first stage we have recorded 112.602 packets.
 - Suricata correctly identified all packets as benign.
 - Kitsune has misclassified 43 packets as malicious.

		Suricata		Kitsune	
		Malicious	Benign	Malicious	Benign
Reality	Malicious	0	0	0	0
	Benign	0	112.602	43	112.559

3. RESEARCH QUESTION TWO - RESULTS (2/3)

• Portscan:

- Suricata has identified 48 packets as malicious and 131.089 others as benign.
- Sucicata does not consider a Portscan as an attack. Thus, depending on the point of view, either 48 or 131,089 packets were misclassified.
- Kitsune has classified 129.987 packets as malicious because sending packets to all ports differs from normal user behavior.

		Suricata		Kitsune	
		Malicious	Benign	Malicious	Benign
Reality	Malicious	48	131.089	129.987	1.150
	Benign	0	106.472	178	106.294

3. RESEARCH QUESTION TWO - RESULTS (3/3)

- Telnet Attack:
 - Suricata has correctly identified all benign and malicious packets.
 - Surprisingly, Kitsune was unable to identify malicious packets.
 - Kitsune has classified 2.848 benign packets as malicious. This is because Kitsune was confused by the user switching the radio station played by the Echo Dot.

		Suricata		Kitsune	
		Malicious	Benign	Malicious	Benign
Reality	Malicious	1.117	0	0	1.117
	Benign	0	113.384	2.848	110.536

4. CONCLUSION

- Typically, private users are no IT-Security experts.
 - They are not able to implement adequate security measures.
- We have developed a concept to implement an IDS into a Smart Home installation.
- We adapted the network segmentation, system architecture, IT-Security Process and the contractual liabilities of an IDS.
- We tested our concept with a series of experiments on four different Smart Home devices.
 - Considering our requirements, signature-detecting IDS are suitable to secure Smart Home installations.
 - Anomaly-detecting IDS are problematic because the anomaly detection algorithms tend to misclassify changing user behavior as an attack.

THANK YOU FOR YOUR ATTENTION

Christoph Haar, Erik Buchmann