
Trust Through Origin and Integrity:
Protection of Client Code for Improved
Cloud Security

dr. Anders Fongen, prof. Kirsi Helkala, prof. Mass Soldal Lund, nov 2020
Norwegian Military University College, Cyber Defence Academy, Lillehammer
email: anders@fongen.no

SECURWARE 2020, Valencia, Spain

Presenter’s bio

Anders Fongen

● Associate Professor, Norwegian Military University College
● Field of research: Software Defined Networking, Networking security
● PhD in Distributed Systems, Univ. of Sunderland, UK, 2004
● Career history

○ 4 years in military engineering education

○ 10 years research in military science (Chief Scientist)

○ 8 years in civilian college (Associate professor)

○ 11 years in oil industry

○ 6 years in electronics industry

2

Introduction

How can we protect a service interface against abuse and fraud?

● Allow only approved client software to access that interface

● The contribution of the presented paper is to offer cloud application services a
protection from rogue client code to access its interface in a harmful or
unintended manner.

3

Technology elements considered:

● Platform integrity protection
● Hardware bound keys and certificates
● The Cross Origin Resource Sharing (CORS) protocol
● Indication of Origin in the HTTP headers
● Device Security Policy Management
● Mutually authenticated TLS connections

4

Platform integrity protection

Trusted Platform Module (TPM) can validate the software platform through

● a chain of protected hash values.
● digital signature of the software stack, created by sw supplier

Reservations:

● Integrity is checked only at boot time
● Application software is not checked, only the platform

○ exception: Chrome OS (since no application can be installed)

5

Certificates and keys bound to hardware

An essential property of device attestation is that certificates and keys can be
bound to hardware.

● Windows 10, Android, ChromeOS allows this

Furthermore, local user authentication can bind certificates to users in order to

● Authenticate both the user and the device!

6

Cross Origin Resource Sharing
Normally a browser will block XMLHttpRequest call made to a different origin than
the web page containing the Javascript.

This restriction can be relaxed if the target of the call explicitly allows pages with
other origins to make calls to it. It does so through HTTP Response headers.

Originally designed for protection against cross-site scripting attacks, the protocol
will now be used for the purpose of client-side integrity protection:

A service can through CORS indicate that it only allows calls to be made to its
interface from specific Javascript origins. (And these origins is presumed to only
contain approved and inspected code.)

7

Indication of origin in the HTTP Header

Another mechanism is the Origin: HTTP Header element. Its value is the URL of the
page making the call. It is included in service requests and allows a service provider to
deny or permit a service depending on its value.

Useful where the CORS protocol is not implemented, as in WebSocket.

8

Integrity of browser code

How can the service provider safely assume that the browser obey the rules of CORS
and the Origin-header?

● Device management system can apply a whitelist of allowed applications,
including only browsers which are known to operate correctly

● Chrome OS has only one browser, which is a part of a sealed (digitally signed)
software stack (platform+applications)

9

Only approved devices are given access to
service
Through mutually authenticated TLS connections, service providers may allow only
devices/users with approved certificates to access the service.

● Approved certificates are issued to devices with integrity protection (e.g.,
Chrome OS)

● Certificates are bound to their assigned devices

10

CORS protocol at work

Only code loaded by
CS will be allowed to
access services in ES

11

The trust chain is

● The client code is approved because it is loaded from an approved code server
○ Code management ensures that the code server only contains approved software

○ The code is protected from modifications during transport by the TLS protocol

○ Code from any other source will not be able to invoke the service

■ Because the CORS rules will make the browser to stop the invocation
● The CORS rules is obeyed by the browser in use by the client

○ Because the browser code is integrity protected
■ Indicated by the certificate used by TLS

● Se article for Java servlet code for this arrangement to work

12

Demo application - chat service

● Messages are signed by sender, relayed by service, validated by receiver
○ using the “Web Cryptography API” (WCA) for key generation and crypto operations

● Employed the described integrity protection arrangement based on CORS and
“Indication of Origin” mechanisms

● Testing both WebSocket and HTTP protocols between service and clients
○ Tomcat was the best suited server for WebSocket protocol

● Difference between Web Browsers were revealed
○ WCA was implemented with different level of maturity

○ Firefox and Chrome ok, Safari not working

13

Screenshot of chat service

14

Conclusion

Existing APIs and protocols can be used to build new security service in order to
improve cloud-based services. Principles and feasibility have been demonstrated.

Behavior of client code cannot be controlled by
security protocols alone.

Programming code available on request

Comments, questions: anders@fongen.no

Thank you for your attention!

15

