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Problem Statement

* Radio spectrum scarcity has become a major issue in mobile communications
due to static allocation (SA) of spectrum to MNOs.

* SA causes a great portion of the spectrum to be left unused in time, frequency,
and space, resulting in poor spectrum utilization.

 Recently, Cognitive Radio (CR) has been considered as a key enabling
technology to address this spectrum scarcity 1ssue.

* In CR, spectrum access 1s a major function, which prevents collisions between
primary UEs (PUs) and Secondary UEs (SUs) 1n accessing any spectrum.

 In this regard, interweave and underlay are two major spectrum access
categories in CR.



Problem Statement — cont’d

Interweave access: SUs can opportunistically Underlay access: SUs can simultaneously

access only the spectrum not used by PUs access the spectrum of PUs subject to
Pros: SUs are allowed to transmit at the satisfying interference threshold set by PUs.
maximum power. Pros: no spectrum sensing 1s needed by SUs.
Cons: needs additional spectrum sensing by Cons: suffers from the reduced transmission
SUs to find an idle spectrum of PUs. power of SUs to limit CCI to PUs.

Hence, though both Interweave and underlay access have pros and cons, the
combination of these two can maximize the SE and EE.

i.e., SUs can explore interweave (max power) when
the spectrum of PUs is idle, whereas underlay
when the spectrum of PUs is busy (reduced power).



Problem Statement — cont’d

Also, most data are originated indoors, particularly in dense urban areas with a large number of
multistory buildings.

Due to the favorable propagation characteristics such as
* low interference effects and

 existence of Line-of-Sight (LOS) components,

* large bandwidth

operating small cells at the mmWave spectrum in such buildings can be a promising candidate
to provide high data rates and capacity.

In line with so, a hybrid interweave-underlay spectrum access technique for
sharing the licensed mmWave spectrum of one MNO with in-building small
cells of another to increase its available spectrum within multistory
buildings can play a vital role in serving high capacity and data rates indoors.



* The proposed technique along with the system architecture is presented.

* Relevant mathematical analysis are performed to derive average capacity, SE,
and EE performance metrics for s-MNOs.

* Extensive numerical and simulation results and analyses for an s-MNO are
carried out.

It 1s demonstrated that the proposed
technique can satisfy both the SE and
EE requirements for 6G mobile systems.



System Architecture and Proposed Technique
(a) System Architecture

A 3D multistory building
deployed with small cells
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Figure 1. A system architecture consisting of four MNOs in a country.

Base Stations (BSs), namely Macrocell
BSs (MBSs), Picocell BSs (PBSs), and
Small Cell BSs (SBSs).

* For simplicity, we show the detailed architecture of only one MNO (i.e., MNO 1) 1n Figure
1(a). All SBSs are deployed only within 3-Dimensional (3D) multistory buildings each serving
one UE at a time.

* SBSs within each building are considered operating at the 28 GHz mmWave spectrum, whereas
MBSs and PBSs are operating at the 2 GHz spectrum (Figure 1(a)).



The licensed 28-GHz mmWave spectrum of one MNO (i.e., p-MNO) can be
allowed to share with small cells in a building of another MNO (i.e., s-MNO)
subject to operating each small cell of the s-MNO at the maximum transmission
power if no UE of the p-MNO is present, whereas at a reduced transmission
power if a UE of the p-MNO is present. The reduced transmission power is
varied with the predefined interference threshold set by the p-MNO.

System Architecture and Proposed Technique
(b) Proposed Technique

Each MNO 1is given a license for an equal
amount of 28 GHz mmWave spectrum.
Spectrum of one MNO can be shared with in-
building SBSs of another.

Figures 1(b)-1(d) show an example for sharing
the spectra of MNO 2, MNO 3, and MNO 4 as
p-MNOs with an in-building SBS of MNO 1 as
an s-MNO using the proposed technique.

Note: Maximum of two UEs (one from MNO 1 and the
other from an p-MNO) can exist simultaneously in the
coverage of an SBS.
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Figure 1. A system architecture consisting of four MNOs in a country.



Mathematical Analysis

( \ Table I. Co-existence and shared spectrum for UE #, of MNO 1 using

0, Peso <—10dB the proposed technique
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Mathematical Analysis

Capacity served by an SBS of an MNO o using the Capacity served by an SBS of an MNO o at the licensed spectrum
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Mathematical Analysis

Traditional Static Licensed Spectrum Allocation (SLSA) technique

Each MNO is licensed exclusively for an equal amount of 28 GHz
mmWave spectrum of M RBs.

sys _
O cap.0,SLSA (L ) = Oumps,o T (L GSF,o,SLSA)

S M
GSF 9098LSA - ZS:] ZZzzl Gs9t’i’0 (ps,t,i,O )
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Improvement Factors for capacity, SE, and EE:
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Performance Results and Analysis

TABLE II. DEFAULT PARAMETERS AND ASSUMPTIONS

Parameters and Assumptions Value

Countrywide 28 GHz spectrum and number of MNOs 200 MHz and 4

28 GHz and 2 GHz spectra per MNO 50 MHz and 10 MHz

For each MNO

E-UTRA simulation case! 3IGPP case 3

Cellular layout®, Inter-Site Distance Hexagonal grid. dense urban. 3 sectors
(ISD)** . transmission direction per macrocell site, 1732 m_ downlink

Carrier 2 GHz non-LOS (NLOS) for macrocells and picocells.
frequency™ 28 GHz LOS for all small cells

Number of cells 1 macrocell, 2 picocells, 8 small cells per building

Total BS transmission 46 for macrocell™*, 37 for picocells’.
power’ (dBm) 19 (interweave) for small cells'**, and
12.01 (underlay) for small cells

Co-channel small- Frequency selective Rayleigh for

scale fading model'~ 2 GHz NLOS, none for 28 GHz LOS
. Outdoor PL(dB)=15.3 + 37.6 logy,R.
et macrocell UE Rismm
Path “S;l“ Indoor PL(dB)=15.3 + 37.6 logioR + Low.
locs macrocell UE R 1s 1n m and Lew=20 dB

PL(dB)=140.7+36.7 logyR.

1
PBS and a UE R is in km

SBS and a UE*? PL(dB)=61.38+17.97 log;gR. Risinm

8 for MBSZ. 10 for PBSL
and 9.9 for SBS%*

Lognormal shadowing

standard dewiation (dB)

Antenna configuration
Antenna pattern
(horizontal)

| Smgle—ﬁlput single-output for all BSs and UEs
Directional (120%) for MBS!,
omnidirectional for PBS! and SBS!
14 for MBS®, 5 for PBS".
5 for SBS"
0 dBa1 (for 2 GHz), 5 dB1 (for 28 GHz.
Biconical homn); 35%
9 dB (for 2 GHz) and
10 dB (for 28 GHz), 3 km/hr
40 m (radius),

Antenna gain plus
connector loss (dB1)
UE antenna gain™:
Indoor macrocell UE!
UE noise figure™
and UE speed!

Picocell coverage, the total number of macrocell

UEs. and macrocell UEs offloaded to all picocells® 30, 2/15
3D multistory building and SBS models (square-gnd L2,
apartments): number of buildings. number of floors per 4.1,
building. number of apartments per floor, number of 10x10 m*

SBSs per apartment, area of an apartment
Scheduler and traffic model’ Proportional Fair and full buffer
Tvpe of SBSs Closed Subscriber Group femtocell BSs
TTI' and scheduler time constant (z,) 1 ms and 100 ms
Total simulation run time 8 ms

taken 'from [13]. *from [14]. *from [15]. *from [16]. from “[17].

For the underlay access, we assume that the transmission power of
an SBS is upper limited by 20% of its maximum power.

To allow flexibility in switching between the interweave and
underlay accesses, for each SBS, a separate transceiver is assumed
to operate at the shared spectrum of M RBs of each p-MNO.



Performance Results and Analysis
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Figure 3. (a) SE and (b) EE performances for MNO 1 due to
applying different techniques for multiple buildings of SBSs.



Performance Results and Analysis

Performance Comparison

Moreover, according to [18-19], it is expected that the 6G mobile
systems will require 10 times average SE (i.e., 270-370 bps/Hz), as well
as 10 times average EE (i.e., 0.3uJ/bit), of 5G mobile systems [20-22].

Using Figure 3, the values of [/ that satisfy both SE and EE
requirements for 6G mobile systems are 9, 13, 14, and 32, respectively
for the proposed hybrid, interweave, underlay, and SLSA techniques.

Hence, the proposed hybrid interweave-underlay technique can
satisfy both SE and EE requirements for 6G by reusing the whole
mmWave spectrum of MNO 1 to its small cells of roughly 31%, 36%,
and 72% less number of buildings than that required by the traditional
interweave, underlay, and SLSA techniques, respectively.

Spectral Efficiency (bps/Hz)

Energy Efficiency (Joule/bit)

Proposed technique |
(hybrid interweave-underlay)

=== = Interweave technique

‘Tnderlay technique

Traditional BLEA technique
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Interweave technique
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Traditional SL3A technique
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Figure 3. (a) SE and (b) EE performances for MNO 1 due to
applying different techniques for multiple buildings of SBSs.



Conclusion

Addresses

Findings

Further
Studies

In this paper, we have proposed a hybrid interweave-underlay spectrum access technique to share the
licensed 28 GHz mmWave spectrum of one MNO with small cells in a building of another MNO.

We have derived average capacity, Spectral Efficiency (SE), and Energy Efficiency (EE) performances for
the proposed technique and carried out numerical and simulation results and analyses for MNO 1 of a
country consisting of four MNOs.

* The proposed technique can improve SE by about 2.82 times, whereas EE by about 73%, of MNO 1 as
compared to that of the traditional Static Licensed Spectrum Allocation (SLSA) technique.

* Further, the proposed technique can satisfy both SE and EE requirements for 6G mobile systems by
reusing the mmWave spectrum of MNO 1 to its small cells of roughly 31%, 36%, and 72% less number
of buildings than that required by the traditional interweave, underlay, and SLSA techniques, respectively.

The proposed technique can be investigated further to address numerous crucial issues, including
* millimeter-wave bands other than 28 GHz, such as 26 GHz, 38 GHz, and 60 GHz,
* non-LOS path loss models,
e directional millimeter-wave antennas,
e spectrum sensing mechanisms and control signaling overhead,
* 1mplementation complexity analysis,
* burst traffic characteristics,
* random deployments of indoor UEs, as well as
* serving more than one UE simultaneously by a single small cell in a building.
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