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 Terahertz and millimeter wave communications

 Dynamic spectrum sharing and policy for 5G and beyond mobile networks

 Cognitive radio networks and spectrum sensing techniques

 Co-channel interference analysis, mitigation, avoidance, and cancellation strategies

 In-building small cell network planning, design and deployment

 Planning, design and development of spectrum sharing algorithm for homogeneous (mobile

networks) and heterogeneous networks (mobile networks and satellite networks)

 Radio resource allocation and scheduling policy and algorithm

 Mobile MAC layer and Physical layer issues

 Proof-of-concept evaluation of virtualization and Slicing of 5G radio access network (RAN)

 Cloud RAN (CRAN) in 5G era

 Fronthaul design for CRAN
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Problem Statement    

• Radio spectrum scarcity has become a major issue in mobile communications

due to static allocation (SA) of spectrum to MNOs.

• SA causes a great portion of the spectrum to be left unused in time, frequency,

and space, resulting in poor spectrum utilization.
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• Recently, Cognitive Radio (CR) has been considered as a key enabling

technology to address this spectrum scarcity issue.

• In CR, spectrum access is a major function, which prevents collisions between

primary UEs (PUs) and Secondary UEs (SUs) in accessing any spectrum.

• In this regard, interweave and underlay are two major spectrum access

categories in CR.



Problem Statement – cont’d  

Hence, though both Interweave and underlay access have pros and cons, the
combination of these two can maximize the SE and EE.
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Interweave access: SUs can opportunistically

access only the spectrum not used by PUs

Pros: SUs are allowed to transmit at the

maximum power.

Cons: needs additional spectrum sensing by

SUs to find an idle spectrum of PUs.

Underlay access: SUs can simultaneously

access the spectrum of PUs subject to

satisfying interference threshold set by PUs.

Pros: no spectrum sensing is needed by SUs.

Cons: suffers from the reduced transmission

power of SUs to limit CCI to PUs.

i.e., SUs can explore interweave (max power) when

the spectrum of PUs is idle, whereas underlay

when the spectrum of PUs is busy (reduced power).



Problem Statement – cont’d

Also, most data are originated indoors, particularly in dense urban areas with a large number of

multistory buildings.

9/1/2020 ICSNC 2020 7

Due to the favorable propagation characteristics such as 

• low interference effects and 

• existence of Line-of-Sight (LOS) components, 

• large bandwidth

operating small cells at the mmWave spectrum in such buildings can be a promising candidate 

to provide high data rates and capacity. 

In line with so, a hybrid interweave-underlay spectrum access technique for

sharing the licensed mmWave spectrum of one MNO with in-building small

cells of another to increase its available spectrum within multistory

buildings can play a vital role in serving high capacity and data rates indoors.



Scope

• The proposed technique along with the system architecture is presented.

• Relevant mathematical analysis are performed to derive average capacity, SE,

and EE performance metrics for s-MNOs.

• Extensive numerical and simulation results and analyses for an s-MNO are

carried out.
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It is demonstrated that the proposed

technique can satisfy both the SE and

EE requirements for 6G mobile systems.



System Architecture and Proposed Technique 
(a) System Architecture
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• For simplicity, we show the detailed architecture of only one MNO (i.e., MNO 1) in Figure

1(a). All SBSs are deployed only within 3-Dimensional (3D) multistory buildings each serving

one UE at a time.

• SBSs within each building are considered operating at the 28 GHz mmWave spectrum, whereas

MBSs and PBSs are operating at the 2 GHz spectrum (Figure 1(a)).

• Four MNOs (i.e., MNO 1, MNO 2,

MNO 3, and MNO 4) are operating in a

country.

• Each MNO has a similar system

architecture consisting of three types of

Base Stations (BSs), namely Macrocell

BSs (MBSs), Picocell BSs (PBSs), and

Small Cell BSs (SBSs).

Figure 1. A system architecture consisting of four MNOs in a country. 



System Architecture and Proposed Technique 
(b) Proposed Technique
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Figure 1. A system architecture consisting of four MNOs in a country. 

• Each MNO is given a license for an equal

amount of 28 GHz mmWave spectrum.

• Spectrum of one MNO can be shared with in-

building SBSs of another.

• Figures 1(b)-1(d) show an example for sharing

the spectra of MNO 2, MNO 3, and MNO 4 as

p-MNOs with an in-building SBS of MNO 1 as

an s-MNO using the proposed technique.

• Note: Maximum of two UEs (one from MNO 1 and the

other from an p-MNO) can exist simultaneously in the

coverage of an SBS.

The licensed 28-GHz mmWave spectrum of one MNO (i.e., p-MNO) can be

allowed to share with small cells in a building of another MNO (i.e., s-MNO)

subject to operating each small cell of the s-MNO at the maximum transmission

power if no UE of the p-MNO is present, whereas at a reduced transmission

power if a UE of the p-MNO is present. The reduced transmission power is

varied with the predefined interference threshold set by the p-MNO.
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Let the binary digits 1 and 0 denote respectively the

existence and nonexistence of a UE of an MNO o in an
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42

Assume that the existence of four UEs in an apartment

for each possible way as shown in Table I is equally

likely.

Table I. Co-existence and shared spectrum for UE     of MNO 1 using 

the proposed technique
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Traditional Static Licensed Spectrum Allocation (SLSA) technique

Each MNO is licensed exclusively for an equal amount of 28 GHz

mmWave spectrum of M RBs.
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• For the underlay access, we assume that the transmission power of

an SBS is upper limited by 20% of its maximum power.

• To allow flexibility in switching between the interweave and

underlay accesses, for each SBS, a separate transceiver is assumed

to operate at the shared spectrum ofM RBs of each p-MNO.



Performance Results and Analysis 
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Figure 2. SE and EE improvement factors for an s-MNO (i.e., MNO 1) due to applying

different techniques for a single building of SBSs.

Figure 3. (a) SE and (b) EE performances for MNO 1 due to 

applying different techniques for multiple buildings of SBSs.

• Using Table I, the maximum amount of the shared spectrum obtained by

employing the proposed technique is 3 times (interweave and underlay

techniques each contributing 1.5 times) the spectrum of MNO 1 ofM RBs.

• This causes the proposed technique to increase the licensed spectrum of M

RBs to 4M RBs for MNO 1.

• The proposed technique improves SE by about 2.82 times, whereas EE by

about 73%, of MNO 1 as shown in Figure 2.

It can be found that with an increase in l, SE increases linearly, whereas EE

improves negative exponentially for all techniques, and the proposed technique

outperforms all techniques in terms of SE and EE



Performance Results and Analysis 
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Moreover, according to [18-19], it is expected that the 6G mobile

systems will require 10 times average SE (i.e., 270-370 bps/Hz), as well

as 10 times average EE (i.e., 0.3µJ/bit), of 5G mobile systems [20-22].

Using Figure 3, the values of l that satisfy both SE and EE

requirements for 6G mobile systems are 9, 13, 14, and 32, respectively

for the proposed hybrid, interweave, underlay, and SLSA techniques.

Hence, the proposed hybrid interweave-underlay technique can

satisfy both SE and EE requirements for 6G by reusing the whole

mmWave spectrum of MNO 1 to its small cells of roughly 31%, 36%,

and 72% less number of buildings than that required by the traditional

interweave, underlay, and SLSA techniques, respectively.

Figure 3. (a) SE and (b) EE performances for MNO 1 due to 

applying different techniques for multiple buildings of SBSs.

Performance Comparison 



Conclusion 

Addresses  

• The proposed technique can improve SE by about 2.82 times, whereas EE by about 73%, of MNO 1 as

compared to that of the traditional Static Licensed Spectrum Allocation (SLSA) technique.

• Further, the proposed technique can satisfy both SE and EE requirements for 6G mobile systems by

reusing the mmWave spectrum of MNO 1 to its small cells of roughly 31%, 36%, and 72% less number

of buildings than that required by the traditional interweave, underlay, and SLSA techniques, respectively.

In this paper, we have proposed a hybrid interweave-underlay spectrum access technique to share the 

licensed 28 GHz mmWave spectrum of one MNO with small cells in a building of another MNO.

We have derived average capacity, Spectral Efficiency (SE), and Energy Efficiency (EE) performances for

the proposed technique and carried out numerical and simulation results and analyses for MNO 1 of a

country consisting of four MNOs.

The proposed technique can be investigated further to address numerous crucial issues, including

• millimeter-wave bands other than 28 GHz, such as 26 GHz, 38 GHz, and 60 GHz,

• non-LOS path loss models,

• directional millimeter-wave antennas,

• spectrum sensing mechanisms and control signaling overhead,

• implementation complexity analysis,

• burst traffic characteristics,

• random deployments of indoor UEs, as well as

• serving more than one UE simultaneously by a single small cell in a building.

Findings 

Further 

Studies 
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