
1

*José Carlos Metrôlho
R&D Unit in Digital Services, Applications and Content 
Polytechnic Institute of Castelo Branco Castelo Branco, Portugal 
metrolho@ipcb.pt

Fernando Reinaldo Ribeiro
R&D Unit in Digital Services, Applications and Content 
Polytechnic Institute of Castelo Branco Castelo Branco, Portugal
 
Pedro Passão
Polytechnic Institute of Castelo Branco Castelo Branco, Portugal

ICSEA 2020, Porto, Portugal, October.2020

TEACHING AGILE SOFTWARE ENGINEERING 
PRACTICES USING SCRUM AND A LOW-CODE 
DEVELOPMENT PLATFORM – A CASE STUDY 

* Presenter

Presenter: Jose Carlos M. M. Metrôlho

Dr. José Carlos Metrôlho is Adjunct Professor at the Technical-Scientific Unit of Informatics of the 

School of Technology of the Polytechnic Institute of Castelo Branco, Portugal. Concluded his 

degree in Electrical Engineering (electronics, instrumentation and computing) in 1994 (UTAD 

University, Portugal), the MS degree in 1999 (Minho University, Portugal), the PhD degree (Minho 

University, Portugal) in 2008. He is member of ACM and an IEEE Senior member. His current 

research interest includes Programming Languages and Environments, Mobile App 

Development, Software Engineering and Agile Software Development.



2

ABSTRACT
Following the recent trends in software engineering, regarding the growing adoption of agile

methodologies and low-code development platforms, and considering the results of surveys, we carried

out on students, alumni and some IT companies, we adapted the software engineering teaching of a

computer engineering course to the needs and new trends of the IT industry. The Scrum methodology

and the OutSystems low-code development platform were used in a project-based learning approach

for teaching agile software engineering practices. This approach was complemented with the

presentation and discussion of several topics during the theoretical classes, lectures given by

professionals from IT companies and study visits to an IT company that uses agile methodologies and low-

code platforms. This approach aims to enhance the technical skills, namely development skills on a

widely used low-code platform and other software engineering skills, but also to reinforce some non-

technical skills of students like teamwork and communication, today highly valued by IT companies. The

first results are quite positive.

ICSEA 2020, Porto, Portugal, October.2020

OUTLINE

ÜScope

Ü Our Approach

Ü Some results

ÜConclusion and future steps



3

Scope

• Course of IT(undergraduate course) 

• Software Engineering subject 

• Second year, Second semester

• 15 weeks ( 30h T + 45h P) , 5 ECTS

Our Approach

• Theoretical lectures  by teacher  (Theoretical part, 30h)

• Practical sessions (Practical part, 45h)

• Invited lectures done by experts from Industry (software companies)

• Study visits to software companies

• Provide additional documentation, in relation to the topics addressed in the 

previous components.

• Some questions made available to the students.



4

Our Approach

• Theoretical lectures by teacher  (Theoretical part, 30h)

• Teacher presents the concepts and methodologies and promotes discussion about them. 

• Students are also provided with an introduction to some software development methodologies namely waterfall, Extreme 

Programming, SCRUM, Spiral, etc. 

• In the assessment, this theoretical part has a weight of 40% for the final grade.

• Practical sessions (Practical part, 45h)

• Students acquire some practice of software engineering through the specification, design, implementation and validation of a 

software application, as a project for teams of students.

• Scrum is the adopted agile software development methodology. The teacher acts as a product owner. Each team member 

has a specific function (e.g., Scrum Master, Designer, etc.). Each team develops a different project. 

• In the assessment, this part has a weight of 60% for the final grade.

• An agile development methodology and a low-code development platform were 
used in a project- based learning approach. 

• Enhance the technical and non-technical skills of students, today highly valued by IT 
companies, without, of course, neglecting other methodologies and topics related 
to Software Engineering.

Our Approach



5

Our Approach

• Invited lectures done by experts from Industry 
(software companies)

• Invited speakers, experts from companies,  share know-how about extra topics 
like Feature Driven Development (FDD), Behaviour Driven Development (BDD), 
etc. 

• One day visits to software companies
• Professionals explain to the students what they are doing, and which technologies 

and tools are used to support their activities. Students also had a brief session 
about software cost estimation. 

• Provide additional documentation, regarding 
topics addressed in the SE subject.

Our Approach

• Student evaluation 

• Theoretical (40% )

• The theoretical evaluation is a written exam over the course material. 

• The exam consists of questions, some of them chosen from a list of questions that 

are made available to the students along the semester. 

• Reflective questions about software engineering topics.

• Desirable that students learn and acquire knowledge for a long-life period, 

mainly to be used after graduation on their job integration experience.



6

Our Approach

• Student evaluation (cont) 

• Practical (60% )
• Students	́ working teams develop the product on sprints (sprints here are defined as having 2 weeks 

each).
• The teacher (i.e. product owner) meets with each team at the end of the sprint to evaluate the work in 

progress, the achievements and the goals for the next sprint. The team works in class and out of class .
• Half way through the semester and at the end of the semester, each team has an assessment session 

were both teachers are present to evaluate different parameters. Some of the parameters are: clear 
goals, state of the art, requirements (functional and non-functional), software development process 
(roles, artefacts, timings, hits and misses), team member	́s description (roles, skills) task scheduling 
(monitoring using Trello tool), modelling (user stories), implementation (code), budget (estimated based 
on the lesson learned during the visit to the company referred to on the previous section of this paper), 
conclusions (pros and cons) and future work, used literature and citation on the final report, and final 
presentation and discussion. 

• Also, in collaboration with the “Scrum Master” of the team, a deeper evaluation is done to eventually 
gave different grades within the members of the team. 

Survey
• In 2018 a survey of former students was conducted in order to obtain 

feedback on the importance of the subject to the current professional activity 
(of those who finished the course and work in the area), and also to know if 
the knowledge transmitted in the theoretical classes remains. 

• Results revealed Agile (Scrum) as methodology most used in their jobs.

• Results also revealed the importance of new coding skills, using development 
platforms widely used by several recruiting companies, and the importance of 
emphasize and work with students on other important aspects of the 
development of software projects, such as requirements analysis, project 
design, project management project, development methodology, quality 
assurance, testing, planning, etc. 



7

AGILE DEVELOPMENT AND LOW-CODE PLATFORMS
• Companies practice agile development methods
• Scrum and related variants is one of the most common used agile methodologies
• Growing adoption of low-code development platforms by IT companies
• Low-code platforms have become quite popular and are currently spread across many 

companies around the world.
• Low-code platforms have often been associated with agile development 

methodologies.
• However, to maximize agile teams’ performance with a low-code platform, there are 

some aspects that must be followed with particular attention. Some of these aspects are 
identified in the document Adapting Agile to Build Products with Low-Code: Tips and 
Tricks and are related to: 
• difficulty for teams in maintaining a sufficient backlog of user stories ready for 

development due to the faster development speed.
• difficulty of new teams in low code to achieve the necessary quality from the 

beginning of the process.
• significant difference in development velocity between co-dependent teams; 
• need for a strong product owner who is engaged, empowered and responsive; 
• need for collaboration between developers and business analysts from the start of 

the development cycle, especially for complex user stories.

Include low-code development in our practical classes
• Students acquire some practice of software engineering through the process management, 

specification, design, implementation and validation of a software application, as a project 
for teams.

• Scrum is the adopted agile software development methodology .
• Teacher has experience with Agile methodologies and holds a professional certification in the 

adopted low-code platform.
• Each team member has different roles (e.g., Scrum Master, developer, etc.)
• Each team develops a different project.
• The new trends and the feedback we obtained in a survey led us to introduce , in the 

previous academic year, the development of projects in practical classes using a low-code 
platform. It allows to:
• give students new coding skills using one of these development platforms widely used by 

several recruiting companies in the software development area.
• due to the characteristics of these low-code platforms, it allows us to emphasize and work 

with students on other different and important aspects of the development of software 
projects, such as requirements analysis, project design, project management project, 
development methodology, quality assurance, testing, planning, etc.



8

• Projects include the development of web and mobile applications using a low-code platform. 

• During the semester, the project evolves over several sprints (of two weeks), in which the 
teacher (acting as product owner) evaluates with the respective team what was achieved in 
the previous sprint and what should be the sprint backlog of the sprint that follows .

• The learning and adaptation to the use of low-code platform by students was overall very 
good, even with Covid-19  restrictions.

• The low-code platform that we used in practical classes was the OutSystems. 

Include low-code development in our practical classes

• Good results from both the theoretical and practical parts.

• The inclusion of the low-code platform in practical classes, allowed students to develop 

web applications, and to develop new skills in one of the low-code platforms widely used 

in software development companies.

• Strengthening students with other skills related to software engineering like development 

methodologies, requirements analysis, project management, schedules, testing, etc.

LESSONS LEARNED AND CHALLENGES FACED



9

ÜConclusion and future steps

• Reinforce students development  skills (on a low-code platform currently highly used in the 
labour market) and  lead students to a greater focus on other software Engineering skills 
(teamwork, communication, requirements, software quality, schedules, documentation, 
among others).

• Results achieved were positive, and the feedback from the students was very rewarding.

• We will continue to be attentive to stakeholder feedback, to keep materials and 
methodologies updated in order to prepare students as best as possible and close to what is 
followed in the software development industry


