
Roy Oberhauser
Aalen University, Germany

ICSEA 2020

§ Application of known solutions to recurring software design
problems

§ Well-documented & popularized in the software
development community, e.g. via
ú Design patterns: elements of reusable object-oriented software by

E. Gamma et al. (a.k.a. GoF)
ú Pattern-oriented software architecture series by Wiley (a.k.a. POSA)
ú Portland Pattern Repository's Wiki

§ Have brought about valuable improvements to and
discussions around software design

2©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Design patterns are mostly described informally, no standardized terminology, naming, notation
§ Implementations can vary widely and may not be obvious

ú Depending on the programming language, natural language of programmer, tribal community
ú Pattern structure and terminology awareness of the programmer, her/his experience, and their interpretation.

§ Detection and documentation of these software design solution patterns has relied on experts
ú Experience, recollection, and manual analysis by experts.

§ Some popular pattern books were published over 25 years ago
ú Many million lines of code have since been programmed, much of it not open source or accessible

§ The code has not been subjected to any comprehensive analysis.
§ Project documentation about applied patterns, if existent, may be inconsistent with the current

source code reality and thus not necessarily dependable
ú E.g., prescriptive documentation of intentions, adaptations during development, maintenance changes
ú Known pattern variants may occur, patterns may evolve over time with technology, and in fact new patterns

may unknowingly be developed that the experts may be unaware of.
§ The investment for manual pattern extraction, recovery, and archeology is not economically

viable

3©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Automated feature extraction of software design patterns from
documentation or code repositories is not yet commonly
available among popular SDLC tools

§ Insight into actual pattern usage could be beneficial
ú Meta-level: identifying which patterns are used how frequently and

determine pattern trends and evolution
ú Application-level: avoiding unintended pattern degradation/erosion and

associated technical debt, quality, and maintenance issues
§ Research has attempted to find automated techniques that work

ú Most of the published techniques have not applied machine learning (ML)
to this problem area

ú One implicit challenge for most approaches is to demonstrate just basic
coverage of all of the GoF patterns - which very few, if any, achieve

4©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

Design Pattern Detection using Machine Learning (DPDML):
§ A generalized and programming language independent

approach
§ Automated design pattern detection based on ML

5©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

6©2020 Roy Oberhauser A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

Hypothesis: utilizing all available data, especially design pattern-
related metrics, and feeding this input into an artificial neural
network (ANN) or other ML models, we can achieve suitable
classification accuracy for automated detection

Realized core DPDML-C (shown in grey)

§ ML model
ú By utilizing ML to analyze sample data, the model learns how to classify

new unknown data, in our case to differentiate design patterns.
ú The realization may apply or combine any ML model that suites the

situation, be it AutoML, unsupervised, supervised learning, etc.
ú In our current realization, an ANN is used because we were interested in

investigating its performance, and intend in future work to detect a wide
pattern scope, pattern variants, and new patterns.

ú From our standpoint, alternative non-ML methods such as creating a
rule-based system by hand would require labor and expertise as the
number of patterns increases and new undiscovered patterns should be
detected.

ú With an appropriate ML model, these should be learned automatically
and be more readily detected.

7©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ ML model
§ Graph-based analysis (GBA)

ú Could query aspects, enhance classification results, and support
manual pattern verification

ú Code repositories are analyzed using graph-based tools like
jQAssistant and various metrics extracted.

8©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent

ú Source code is converted into an abstracted common format for
further processing.

ú We can then, e.g., extract various metrics in a common fashion,
independent of the original programming language syntax.

ú Our realization utilizes srcML, thus our realization can currently
support any programming languages that map to the srcML XML-
based format, including C, C++, Java, and C#.

9©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent
§ Semantic analysis

ú Common pattern signal words from the
source code can be used as an indicator
or hint for specific pattern usage.

ú Our realization utilized the signal
words in the table, and supports
German, Russian, and French.

10©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

Pattern Signal Words
Adapter Adapter adaptee target adapt
Factory Factory create implements type
Observer observer state update notify

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent
§ Semantic analysis
§ Static code metric extraction

ú Various static code metrics are
utilized to detect and differentiate
design patterns

ú Our realization utilizes those
shown in the table

11©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

Abbreviation Description
NOC Number of classes
NOF Number of fields

NOSF Number of static fields
NOM Number of methods

NOSM Number of static methods
NOI Number of interfaces

NOAI Number of abstract interfaces
Inspired by Uchiyama et al.

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent
§ Semantic analysis
§ Static code metric extraction
§ Dynamic analysis

ú Tracing runtime code behavior can detect behavioral similarities in
event sequencing, especially for the creational or behavior patterns

ú Event and related runtime metrics can be extracted

12©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent
§ Semantic analysis
§ Static code metric extraction
§ Dynamic analysis
§ UML structural analysis

ú Extract indicators/signal words/metrics from XMI structures
ú Generate UML from code - but code has the basis already
ú A convolutional network could analyze UML images for similarities to

support pattern classification
13©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent
§ Semantic analysis
§ Static code metric extraction
§ Dynamic analysis
§ UML structural analysis
§ Metric normalization

ú Metric value ranges normalized to scale 0-1 scale

14©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ ML model
§ Graph-based analysis (GBA)
§ Programming language-independent
§ Semantic analysis
§ Static code metric extraction
§ UML structural analysis
§ Dynamic analysis
§ Metric normalization

15©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

16©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Due to unexpected obstacles and project resource
constraints, only a partial realization of the comprehensive
DPDML was achieved as explained

17©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ UML structural analysis
ú Almost none of the 60 repos used for the evaluation provided UML

diagrams
 Even they had, manual code-to-UML validation would be time-

consuming. Signal words may exist in one and not in the
ú In our opinion, larger commercial closed-source projects are more

likely to include UML documentation
ú Since little benefit could be had for our evaluation, it was not yet

realized and will be addressed in future work

18©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Dynamic analysis
ú Differing runtime environments, languages, libraries, concurrent processing
ú Requires runnable binaries, which not every evaluation repo had
ú Requires specialized tooling to acquire behavior tracing data

 No standard formats or tools exist in this area
ú Compute-intensive and time-consuming to manually setup and acquire pattern-

related traces
ú Ensuring the patterns are actually substantially executed

 Can be an issue for larger projects.
ú Gathering sufficiently large training sets for ML
ú An interesting academic exercise to improve our understanding

 Yet probably impractical and not economically viable for practitioners
ú Not yet realized and will be addressed in future work

19©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Graph-based analysis (GBA)
ú GBA tools typically require compiled binaries for analysis

 Not all of our evaluation repos consisted of compiled/compilable code
ú GBA tools typically

 Programming language-specific, IDE-specific, and assume GUI-based
human-interaction

 Not geared for automated analysis of many projects in various languages
ú Reverse-engineering or code analysis tools

 Often commercial
 Missing a command-line mode
 Limited use for automated analysis situations in our context

ú Will be addressed in future work

20©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Graph-based analysis (GBA)
ú GBA tools typically require compiled binaries for analysis

 Not all of our evaluation repos consisted of compiled/compilable code
ú GBA tools typically

 Programming language-specific, IDE-specific, and assume GUI-based
human-interaction

 Not geared for automated analysis of many projects in various languages
ú Reverse-engineering or code analysis tools

 Often commercial
 Missing a command-line mode
 Limited use for automated analysis situations in our context

ú Will be addressed in future work

§ Determine if the core of the DPDML solution and the
following principles work as intended
ú ML model

 Initially an ANN was used for our investigate
ú Programming language-independent
ú Semantic analysis
ú Static code metric extraction
ú Metric normalization

21©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

Realized core DPDML-C
(shown in grey)

§ Due to resource and time constraints, initially focused on
learning to detect a single pattern from the categories:
ú Structural: Adapter
ú Creational: Factory
ú Behavioral: Observer

§ Scope to be expanded in future work
§ Python, TensorFlow, Keras
§ Semantic analysis

ú Signal words (Python translate used): English, German, French,
Russian

22©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

23©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Input layer size matches data points: 7 metrics and 12 semantic
match values (19 total). The input model structure is a numpy array:
ú [NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1, ASW2, ASW3, ASW4,

FSW1, FSW2, FSW3, FSW4, OSW1, OSW2, OSW3, OSW4]
ú First 7 values correspond to metrics table (right)
ú Rest indicate number of signal word matches (bottom table)

SW=Signal Word, A=Adapter, F=Façade, and O=Observer, 1-4 implies table
column

§ Output layer: 3 neurons corresponding to the 3 design patterns
§ Activation method: "Softmax"
§ "Adam” with default values used as optimizer
§ No regularization was applied in each layer
§ Loss function: sparse categorical crossentropy
§ ANN size should fit problem size

ú Small ANN structure adjustments showed no significant performance impact,
whereas significantly increasing the neuron count or layer count negatively
impacted results.

ú 2 hidden layers and 48 neurons: 1st layer has 640 parameters, the 2nd layer 528,
and output layer 51, resulting in 1219 parameters that are adjusted during
training

Abbreviation Description
NOC Number of classes
NOF Number of fields

NOSF Number of static fields
NOM Number of methods

NOSM Number of static methods
NOI Number of interfaces

NOAI Number of abstract interfaces

Pattern Signal Words
Adapter Adapter adaptee target adapt
Factory Factory create implements type
Observer observer state update notify

§ ANN trained in epochs
ú The complete training set is sent through the network whereby weights are adjusted
ú As the weights and metrics change per epoch, an early-stopping callback stops the training if the accuracy of the network

decreases over more than 10 epochs, saving the network that had the best accuracy
§ A validation dataset is typically used during training to monitor results on unlearned data after each epoch,

but as our training set was limited, we used a prepared testing dataset with known labels
§ Design pattern training sets considered:

ú Pattern-like Micro-Architecture Repository (P-MARt):
 Includes a collection of microstructures found in different repositories such as JHotdraw and JUnit
 Patterns are intertwined with each other, so they do not provide isolated example specimens for training the ANN

ú The Perceptrons Reuse Repositories: results were not available on website during our realization
§ Reason for ANN:

ú DPDML intent initially much broader scope for data pattern mining
ú Expected a large supply of sample data.
ú Interested in determining if we could train an ANN to detect these patterns with relatively few samples

§ Unexpected additional resource and time involved due to manually searching for pattern samples resulted
in:
ú Reduction in number of design patterns trained and tested (see future work)
ú No comparison with alternative ML classification schemes (see future work)

24©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

25©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Used 75 small single-pattern code
projects from public repositories (github,
pattern book sites, MSDN, etc.)
ú 49 in Java
ú 26 in C#
ú Demonstrates the programming language

independent principle
ú Inequality in ratio due to language popularity

and age
§ Evenly distributed into 25 unique code

projects per pattern.
§ They were specifically labeled as

examples of these patterns, and manually
verified.

26©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Supervised training dataset: 20 projects per
pattern category (60 of the 75 total)
ú 60-75% Java projects (green) and the remainder in C#

(blue) as shown on right
§ Test dataset: allocated the remaining 15 of the

75 projects (5 per pattern category (3 in Java
(orange) and 2 in C# (magenta))
ú To evaluate signal word pattern matching impacts on

ANN results:
 Duplicated projects and removed/renamed signal words
­ Thus 6 Java (orange) and 4 C# (magenta) projects per

pattern/category (bottom of figure)
ú Resulted in 10 test projects per pattern (30 total)

§ Accuracy improves from 47% to 95% in the first 7 training epochs (top right
figure), thereafter fluctuating between 85-95% with a peak of 96.7% in the 27th

epoch
§ The loss value drops from an initial 1.0841 to 0.2816 in epoch 17 before small

fluctuations begin, with the trend continuing downward
ú The loss value of 0.1995 in epoch 27 is an adequate prerequisite for detecting patterns in

unknown code projects, and we saw little value in increasing the training epochs
§ The early stopping callback was not triggered since the overall accuracy of the

network is still increasing despite the fluctuations
ú Indicates a positive learning behavior and implies that with the given data points, it is finding

structures and values that allow it to differentiate the three design patterns from each other
§ Thus, we stopped the training at 30 epochs

ú Training took 2-45 seconds depending on the underlying hardware environment
§ Training summary:

ú Considering that the worst case of random guessing would result in an accuracy of 33%,
97% accuracy is significantly better and shows the potential of the approach

ú Not only is the ANN learning to differentiate the patterns, its confidence for these
determinations increases during the training
 By epoch 27 with an accuracy of 96.7% and a loss of 0.1995, only 2 out of the 60 total code

projects spread evenly across the three design patterns are incorrectly classified

27©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ The test dataset used 15 unique code projects (5/pattern)
duplicated and signal words removed/renamed, resulting in 30
code projects.
ú Signal words removal for determining degree of dependence of the ANN

on signal words
§ Accuracy dropped to 83.3%: 25 of 30 patterns correctly

identified
§ Loss increased to 0.4060: loss in confidence of categorization
§ Deterioration expected when working with unfamiliar data
§ Result: ANN able to use its learned knowledge from training to

correctly classify a majority of unknown projects (25 out of 30)
28©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

29©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ All the code projects predicted to be Factory were correct (a precision of 100%), while
the remaining 30% of the Factory pattern projects were incorrectly classified as
another pattern (these false negatives result in a recall of 70%)
ú This indicates that the Factory is more easily confused with the other patterns

Possible explanation: metrics used may better differentiate more complex patterns
ú Other patterns had less precision (81% or 75%), but a better recall of 90%
ú The overall F1 score is 0.83

§ Signal word influence: hypothesis that signal words would improve results unfounded
ú Classification precision unaffected: 12 projects with and 13 without were correctly classified
ú Additional test runs showed similar results (+/- one project)
ú However, in future work we will investigate this further as we increase the statistical basis

§ Results show suitable accuracy of the DPDML-C, and we believe a generalization of
the DPDML approach across the GoF and further patterns to be promising

Predicted Labels True Labels Accuracy Precision F1 Score
Factory Adapter Observer

Factory 7 0 0 90% 100% 0.82
Adapter 1 9 1 90% 81% 0.86
Observer 2 1 9 86.7% 75% 0.82

Recall 70% 90% 90%

§ Precision column indicates how many of the predicted labels are correct
§ Recall row indicates how many true labels were predicted correctly
§ Fewer false positives improve the precision, while fewer false negatives

improve the recall value

§ DPDML provides a generalized and programming language-independent approach for
automated design pattern detection based on ML

§ Our realization of the DPDML-C core of the solution approach shows the feasibility of key
aspects of DPDML: ML model, programming language-independent, semantic analysis, static
code metric extraction, metric normalization

§ Our realization of the core DPDML-C shows its feasibility for source code-based analysis
§ Evaluation with 75 unique Java and C# code projects acoss 3 common GoF pattern categories
§ Supervised training on 60 unique Java and C# code projects achieved an accuracy of 83% and

loss of 0.4060 on testing 15 unfamiliar code projects (which duplicated with signal word
modifications)
ú Investigated the feasibility and potential of ANN for automated design pattern detection
ú The accuracy result was achieved based only on static analysis, without involving cost-intensive behavioral

analysis
§ For the 3 patterns, signal words did not improve results, so other pattern characteristics can

potentially suffice as indicators
§ DPDML shows promise for extending the automated detection to other patterns

30©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

§ Investigate the inclusion of additional pattern properties and key differentiators
to improve the results even further, including:
ú Analyzing the network classification errors to optimize accuracy
ú Adding support for the remaining GoF patterns
ú Utilizing semantic analysis with NLP capabilities on the code for additional natural

languages
ú Supporting additional programming languages such as C++
ú Extending prototype realization to include additional code metrics, UML structural

analysis (if UML is available), graph-based analysis, and dynamic behavioral analysis if
traces are provided

ú Evaluate pattern detection when patterns are intertwined
ú Evaluate accuracy, performance, and practicality on large projects
ú Investigate the detection of new design patterns and variants to the traditional patterns
ú Apply cross-validation and consider alternative classification schemes such as Naïve

Bayes, Decision Tree, Logistic Regression, and SVMs
§ An empirical industrial case study

31©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages

©2020 Roy Oberhauser ICSEA2020: A Machine Learning Approach Towards Automatic Software Design Pattern Recognition Across Multiple Programming Languages 32

Thank you!

