T2.Using the BlueLab IoT System

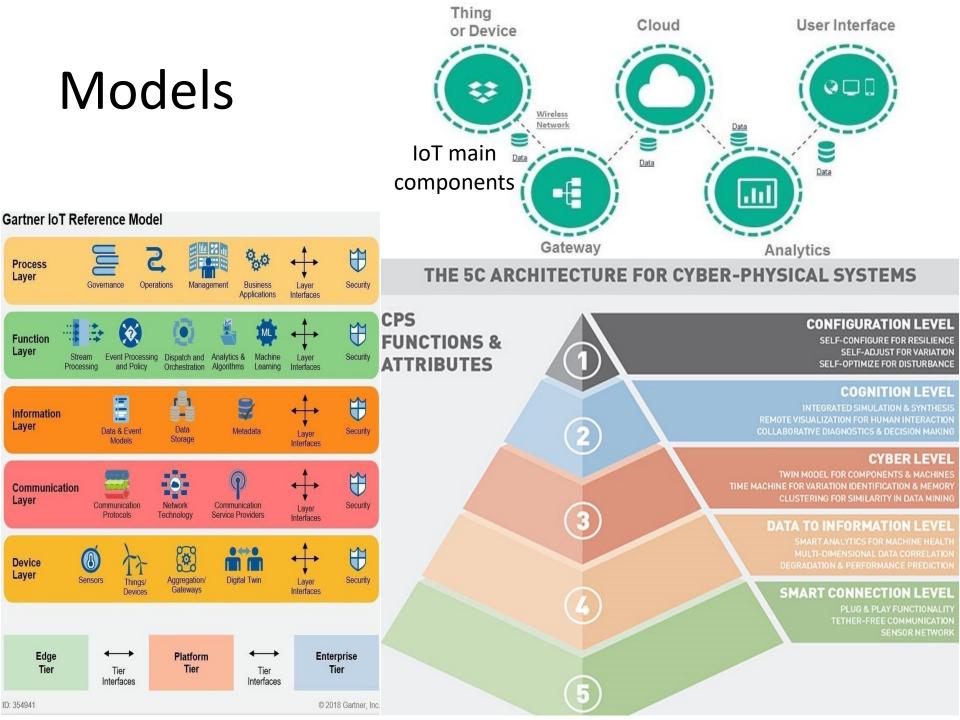
IARIA - ICONS 2020 – Lisboa, Portugal Vitor Vaz da Silva

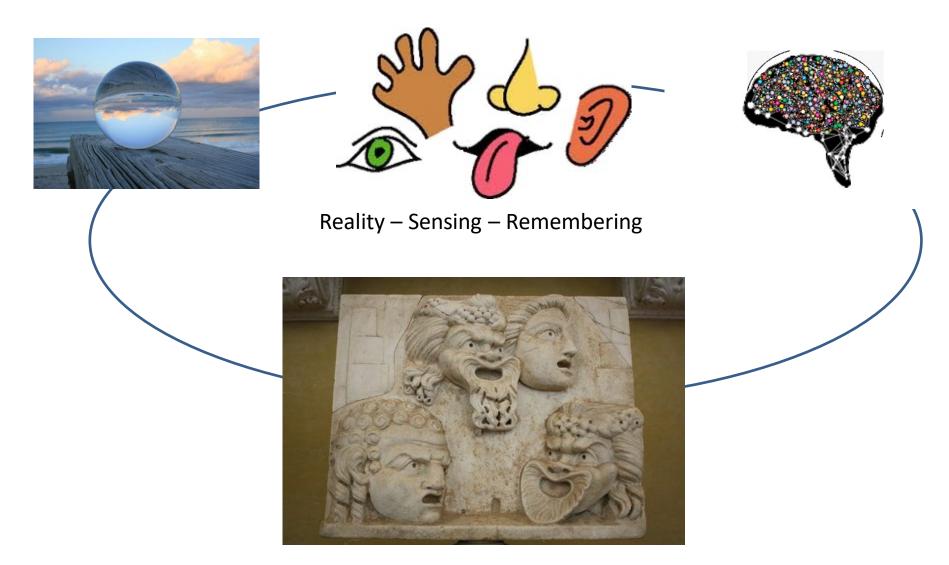
vsilva@deetc.isel.ipl.pt

(ISEL/IPL CTS-UNINOVA) Instituto Superior de Engenharia de Lisboa/ Instituto Politécnico de Lisboa Centre of Technology and Systems — Uninova — Caparica NexComm 2020 - 23-27 February 2020

- IoT / CPS
- Other Systems
 - AskSensors
 - uBeac
 - Temboo Kosmos
 - Thinger
- BlueLab IoT System
 - Demonstration
 - Android smartphone
 - Physical stations ESP8266, ESP32

IoT - CPS


- IoT Internet of Things (*Popular term*)
- CPS Cyber Physical Systems (Academic)


IoT – needs Internet

CPS – uses communications but not necessarily the Internet

 IIoT – Industrial IoT
 ItoT IoT
 Internet

 BlueLab
 Vitor Vaz da Silva – ICONS 20202
 3

Recalling - Acting

Tools and Methods Changed

Platforms that support Expressif chips

https://www.espressif.com/en/ecosystem/cloud-platform

Compare Systems

AskSensors

Kosmos

- Register by e-mail
- Create Sensor and Modules
- Each Sensor has an API key ex: FALOAPPKH17ZR4Q23A8U9W0XPJL0F6OG
- Alarm min-max value and time interval (Email)
- Displays module values (several graphic types) autorefreshed
- Exports CSV data

- Actuators (each has a API Key out)
- An actuator may have modules
- Dashboard
- 15-90 day free trial, 2-60 devices (sensor/actuator)
- Protocol Http/Https & Mqtt API
- JSON data
- Several plans (unlimited data storage @ 30 month data retention)

AskSensors

connecting to HOST : api.asksensors.com
 requesting URL: /write/RS6EZyqRDIo71vn73zPWjEObgz3vR4gc?module1=26
 Request sent to ASKSENSORS
 ASKSENSORS replay:

closing connection

********* requesting URL: /read/gaHIGUwyfuc3N8ZyhxBAZOd4xvR3fjSE?module=module1&maxResults=1 HTTP/1.1 200 OK

connecting to HOST : api.asksensors.com
 requesting URL: /write/RS6EZyqRDlo71vn73zPWjEObgz3vR4gc?module1=10
 Request sent to ASKSENSORS
 ASKSENSORS replay:

closing connection

********* requesting URL: /read/gaHIGUwyfuc3N8ZyhxBAZOd4xvR3fjSE?module=module1&maxResults=1 HTTP/1.1 200 OK

Hi victorix

The data read on your sensor has exceeded the alert threshold:

Sensor : humi Module : Module 1 minThreshold : 40 maxThreshold : 60 Value : 70 Date : 12 Feb 2020 23:09:38 UTC

AskSensors Alert

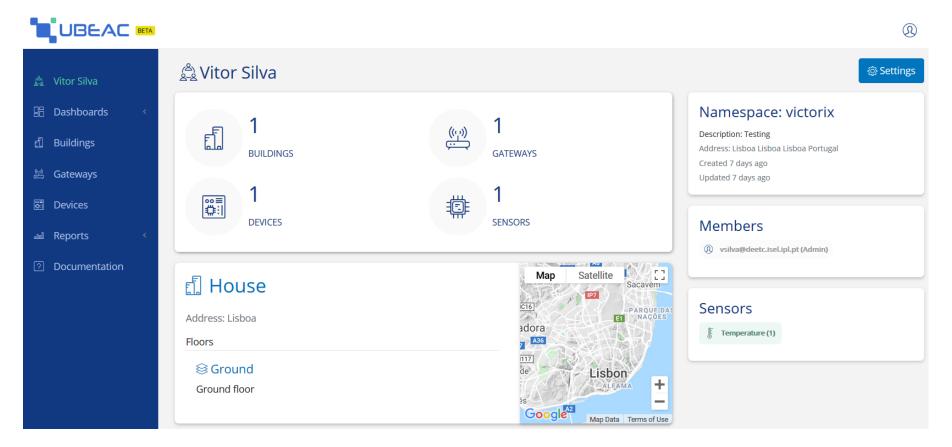
You receive this email because you have enabled an AskSensor email Alert. Login to your AskSensors <u>account</u>

Thanks for trying AskSensors!

All the best,

The AskSensors team

This email was sent to vsilva@deetc.isel.ipl.pt by AskSensors.

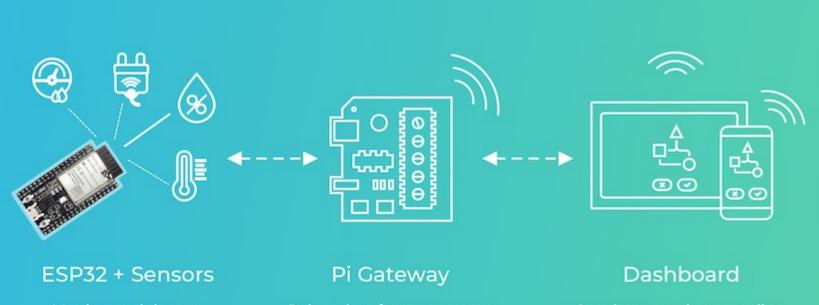

uBeac

- Register by e-mail
- Teams, Buildings, Floor
- Create Device, Sensor
- Create Gateway several types
- Create an EndPoint
- Protocols HTTP(s) MQTT(s)

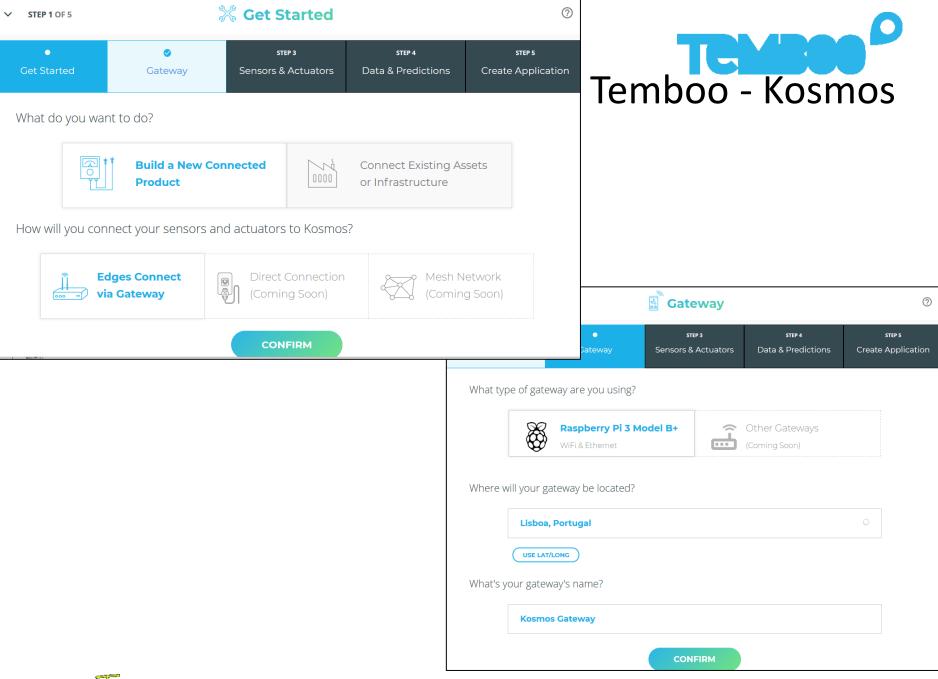
uBeac

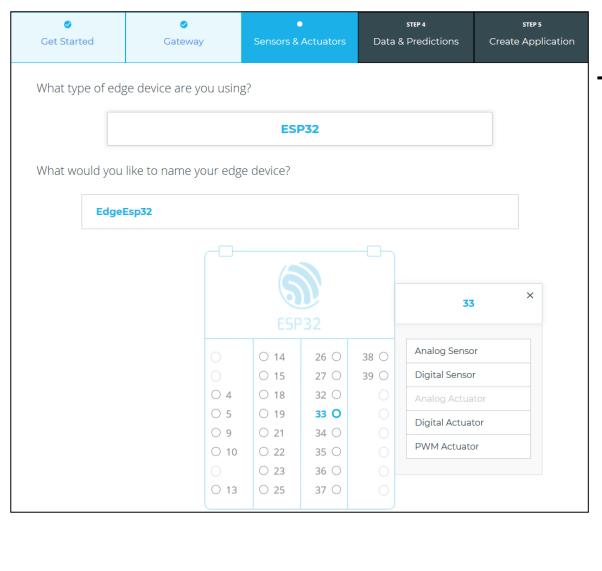
				JSON {}	JSON {}	JSON {}	JSON {}
	JBEAC	uBe	ac	uBeac Multiple Devices	uBeac Multiple Sensors	uBeac Single Sensor	uBeac Custom JSON Gateway
				Ingics BLE WiFi Gateway iGS01	Jaalee BT- Gateway	BlueCats Edge Relay	AB BLE Gateway V4
	 ● ▲ Ø https://app.ubeac.io/devi ● ■ DevTest 	ces/details/a038f06a-691a-4227-acb8-c1ef2t	nd5a1d0	MINEW BLE & Wifi Gateway - G1	Ruuvi Station Application	Beacon Scanner Application	0 1 0 1 0 1 Data Collector Application
E Dashboards E Buildings E Gateways Devices	No Request LAST REQUEST	0 REQUESTS	UID:	1111111 Sensors	ator		
eports Documentation	Live Data	There is nothing!	5× 🦿 📥 🛍	Random Please select C Temperature Interval 5 Min Range 0 Max Range 10	Second		
<	_			⊳ Start			

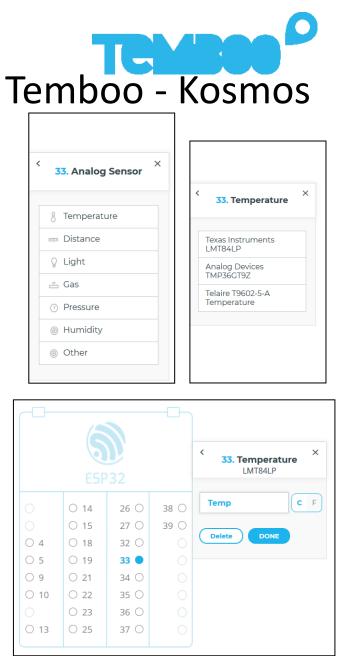
Firmware



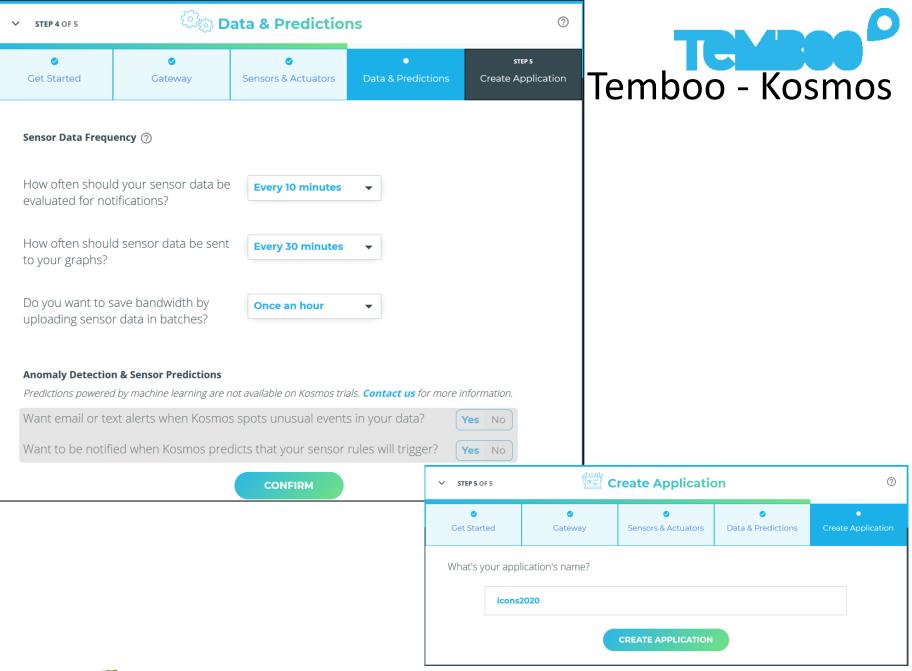
- Registration by email
- 5 steps to generate and download
 - gateway and device code
- Sensors and Actuators
- Alarms (and predictive)

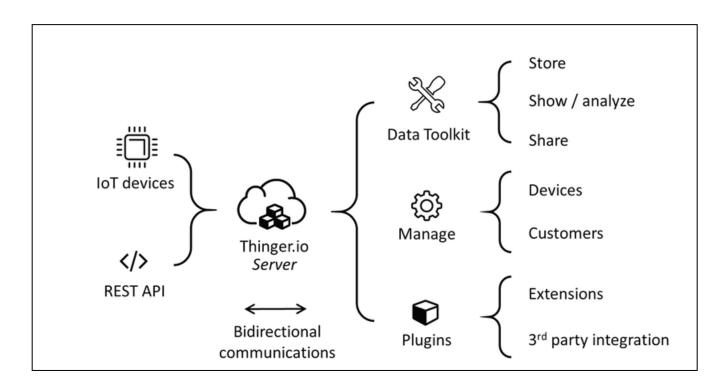



Temboo - Kosmos



Monitor and detect conditions you want to know about. Relays data from sensors to Kosmos See data, get alerts, predict downtime, and more!




Temboo - Kosmos

=	
Voilà! Your Kosmos Applicatio	n is ready.
We've automatically generated your Ko and supporting files. Make sure to dow	
Download Your Kosmos Applica	ation Files
1 x Kosmos Gateway Image	Download (304 MB)
1 x Kosmos Application Files	📩 Download (32 KB)

Thinger

Thinger

🗞 thinger.io	這 2	victorix 🗸 🕠
Your Cloud	ESP32VVS Dashboard	\$
 Dashboards Devices Data Buckets 	70 bytes Transmitted Data	Live Transmission Bytes Sent Bytes Received
 Endpoints Access Tokens 	95.92.244.85 IP Address Online Device State	60 40
Your Account Profile Settings	Od Oh 1m 13s	
🖌 Account Upgrade	Device Tokens () + Add	ESP32VVS API Explorer ^①
Resources Shop Documentation Community CitHub Libraries		

Thinger

#include <ThingerESP32.h>

#define USERNAME "victorix"
#define DEVICE_ID "esp32vvs"
#define DEVICE_CREDENTIAL "wxO0bNb0Wv&%"

#define SSID "MySSID"
#define SSID_PASSWORD "MyPassword"

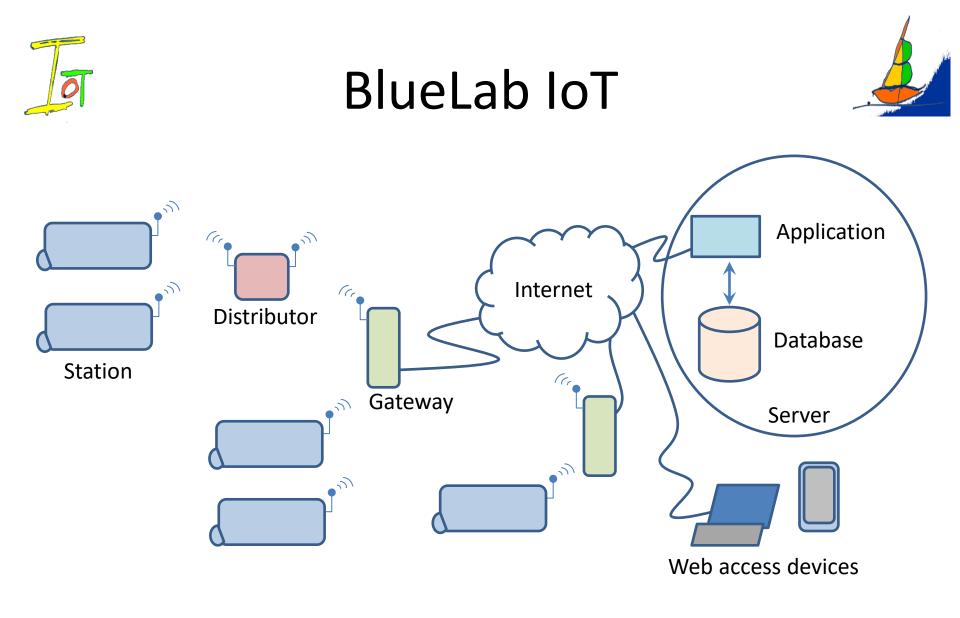
#define LED_BUILTIN 2
ThingerESP32 thing(USERNAME, DEVICE_ID, DEVICE_CREDENTIAL);

void setup() {
 Serial.begin(115200);
 delay(4000); //Delay needed

pinMode(LED_BUILTIN, OUTPUT);

```
thing.add_wifi(SSID, SSID_PASSWORD);
```

// digital pin control example (i.e. turning on/off a light, // a relay, configuring a parameter, etc) thing["led"] << digitalPin(LED BUILTIN);</pre>


```
// resource output example (i.e. reading a sensor value)
thing["millis"] >> outputValue(millis());
```

```
// more details at <u>http://docs.thinger.io/arduino/</u>
Serial.print("Setup Done");
```

```
void loop() {
    //Serial.print("."+String(millis()));
    thing.handle();
```

ESP32VVS API
led - Private
Resource Input
Boolean
Options
>_ Run 👁 Show query
millis - Private
Resource Output
Number
216963
Options
>_ Run ♥ Show query

- Register by e-mail or phone
- A user can have
 - stations
 - sensors
 - actuators
 - data is sent from the station to the system
 - the system does not *(yet)* act upon the actuators
 - profiles
 - for station authentication in the system
 - different stations can have the same profile

- Station
 - communicates by WiFi
 - protocol https
 - can send alarms (e-mail or sms, ... profile dependent)
 - unique id given by the system (function of a physical unique id ex: MAC address)
 - Hardware used ESP8266, ESP32 (C++ code)

Ta
C Ver

station					
id int4 NOT NULL		= entry			
varchar(255)		¹² ³ seq_num		t4 NOT I	NULL
text float8		¹² station_id	l in	t4 NOT I	NULL
	•	¤§ kkey	varchar(10	0) NOT I	NULL
float8 float8		🛞 t_stamp		timest	amp
text		evvalue		varchar	
bool		🛞 db_t_stam	p	timest	amp

- Data 🖾 del
 - stored as a pair (key, value) that belongs to a station
 - has a sequence number (starts with 1)

bool

- has a device/sensor timestamp
- has a database timestamp

station

¹² station_i

ABC name

123 lat

123 Ion

123 alt

ABC ODS

del entries

- Errors and other information can also be sent as a key, value pair
- Users can delete data.
- Data cannot be edited
- All data are Strings
 - waists space
 - easy to write/read the context is with the sensor

Two different sensors in the same station with **different sample rates**, and their **values are buffered and then sent together**

Seq num	s1	s2	Database timestamp
Ν	Val1_1 Stime1_1	Val2_1 Stime2_1	Tstamp_N
N+1	Val1_2 Stime1_2	Val2_2 Stime2_2	Tstamp_N
N+2		Val2_3 Stime2_3	Tstamp_N
N+3		Val2_4 Stime2_4	Tstamp_N
N+4			

Two different sensors in the same station with **different sample rates**, and their **values are sent after sampling**

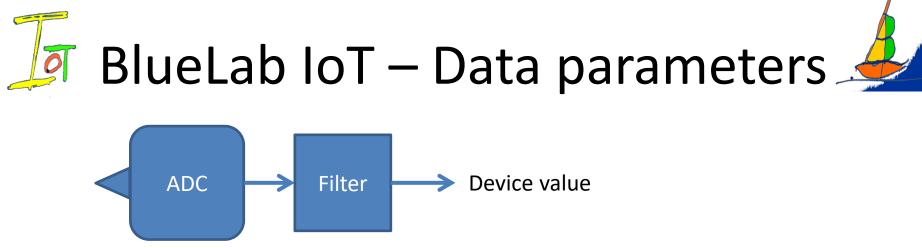
Seq num	s1	s2	Database timestamp
N		Val2_1 Stime2_1	Tstamp_N
N+1		Val2_2 Stime2_2	Tstamp_N_1
N+2	Val1_1 Stime1_1		Tstamp_N_2
N+3		Val2_3 Stime2_3	Tstamp_N_3
N+4		Val2_4 Stime2_4	Tstamp_N_4

Two different sensors in the same station with equal sample rates, and their values are buffered and then sent together

Seq num	s1	s2	Database timestamp
Ν	Val1_1 Stime1_1	Val2_1 Stime2_1	Tstamp_N
N+1	Val1_2 Stime1_2	Val2_2 Stime2_2	Tstamp_N
N+2			

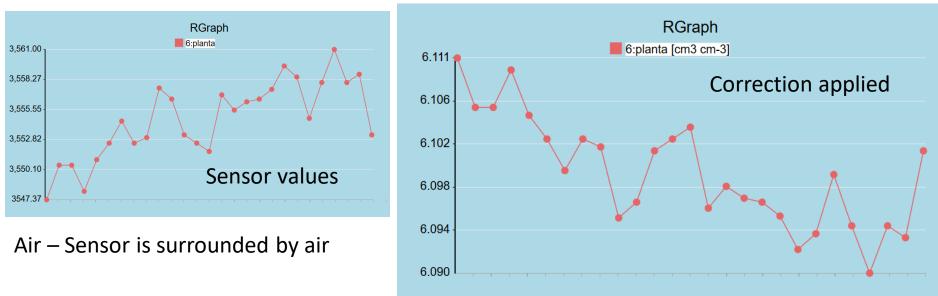
Two different sensors in the same station with **equal sample rates**, and their values are **sent together after sampling**

Seq num	s1	s2	Database timestamp
N	Val1_1 Stime1_1	Val2_1 Stime2_1	Tstamp_N
N+1	Val1_2 Stime1_2	Val2_2 Stime2_2	Tstamp_N_1
N+2			



- Data Parameters
 - stored as a pair (key, value) that belongs to a station
 - has a sequence number always O
 - has a device/sensor timestamp (if the station stored it)
 - has a database timestamp
 - used for additional information of the sensor (key)
 - Special parameters: **#key_** followed by **0:n** | **U** | **O** | **S**
 - $0:n x^{0:n}$, U units, O offset, S scale
 - >float, <float clamp values

- Sensor value *x* = Offset + Scale * device value
- (this transformation may be necessary for example due to the ADC range, in volts and in bits)
- Sensor parameters $a^n x^n$, $n \in R$
- (these parameters may be necessary due to the non linear response of the sensor)
- Data parameters do not change the stored data values



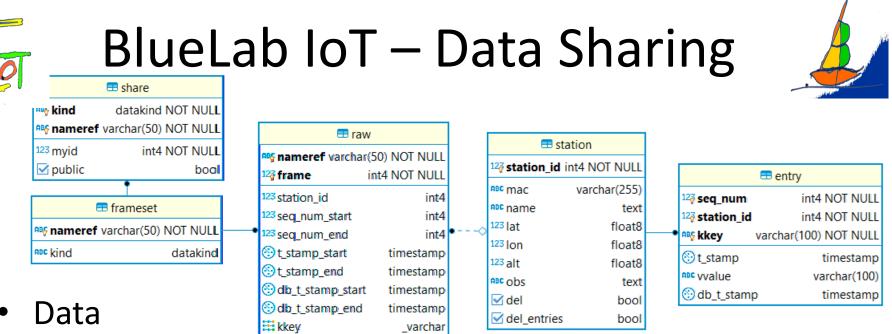
- Moisture sensor SEN0193 (Reference 16)
- $\theta = 13.248 2.576 \cdot 10^{-3}x + 1.726 \cdot 10^{-7}x^2 3.839 \cdot 10^{-12}x^3$

Station id	6 ~	Station:Parameter	Va
Seq numbe	er O	1:#bat 1	0.0
timeStamp	Mon Feb 17 2020 09:29:14 GMT+0000 (Western European Star	2:#bat 1	0.0
key	#planta_3	2:#bat_U	
/alue	-3.839e-12		1(
		2:#humi_U	rl
	Insert	4:#bat_1	0.00
	Que -	4:#humi1	1(
		5:#bat_1	0.00
	Capacitive Soil	5:#humi1	1(
	Moisture Sensor v1.2	6:#planta_0	13.
	C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	6:#planta_1	-2.5
Υ-	Sensor value [raw counts]	6:#planta_2	1.7
л		6:#planta_3	-3.83

• θ - Volumetric water content [cm³ cm⁻³]

Values are stored in the database as they are read from the sensors;

can be viewed and downloaded

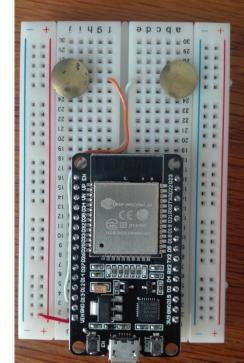

Sensor parameters can be viewed, downloaded and changed

(presently they have the timestamp of the calibration; in future,

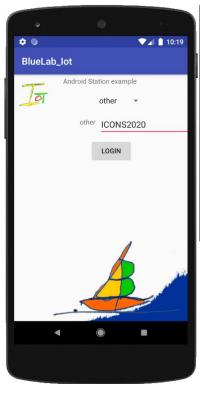
calibration history will be added to account for sensor decay and

correctly apply the parameters to the data)

Calibration corrections are applied for viewing, and processing *Vitor Vaz da Silva – ICONS 20202*



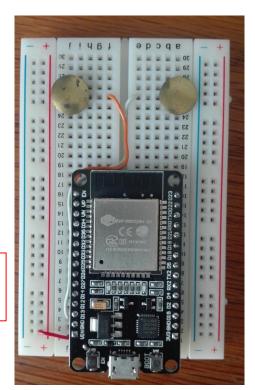
- Can be classified as raw (frames)
- A frameset is a set of raw data (frames)
- Framesets can be shared (among projects of the user not yet done)
- Shared framesets can be public shared with all users
- There is no data duplication (only database table views)
- Data parameters are shared as well


https://bluelab.pt/iot

Live examples

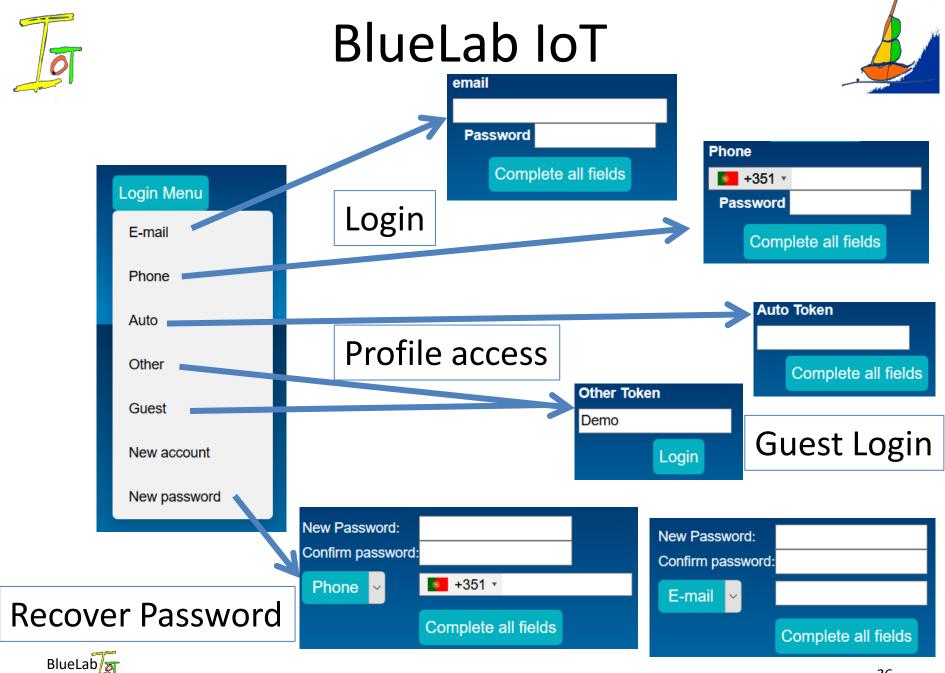
github.com/tektonia/bluelab_iot

BlueLab - IoT	Web
Login Menu	
BlueLab	

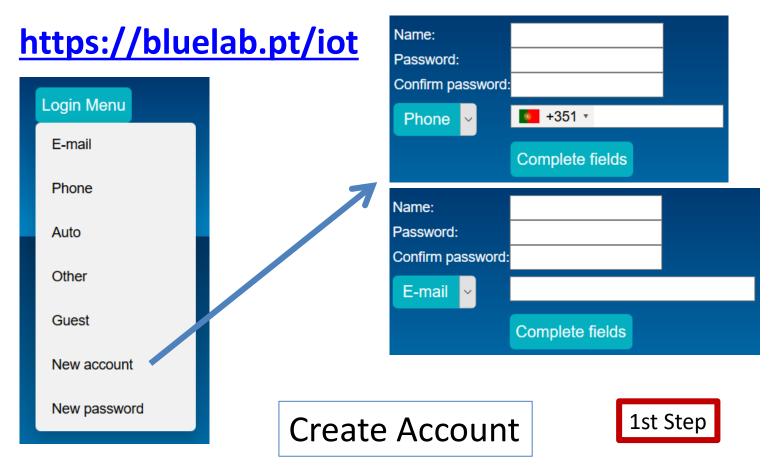

Example of a station – Android App

- Light sensor
 - GPS sensor

_

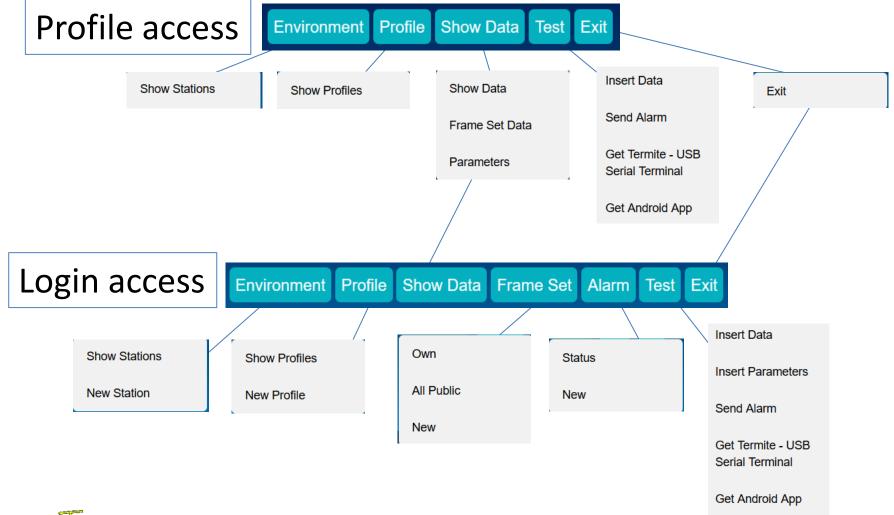

Example of a station – ESP32

- ADC sensor


interface for the user

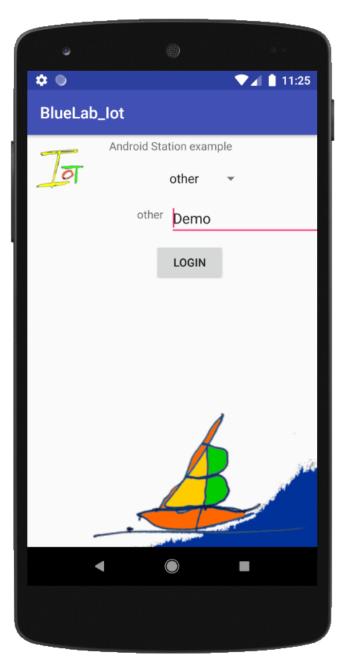
Profile Access – Is a direct login token that does not need password

- Preferably used in each station for accessing the system
- More than one station can have the same profile
- Each station has a unique identifier (ex: MAC address)
- Reduced privileges; used for storing data does not allow deletion or data sharing
- Created by a login (email or phone) with full privileges



t Profile	Show Data	Frame Set	Alarm	Test Exit			
New Profile							
name tipo Other ~ new profile							
your password Complete all fields							
	na tip	New P name tipo Other ∽ your password	New Profile name tipo Other ✓ your password	name tipo Other ∽			

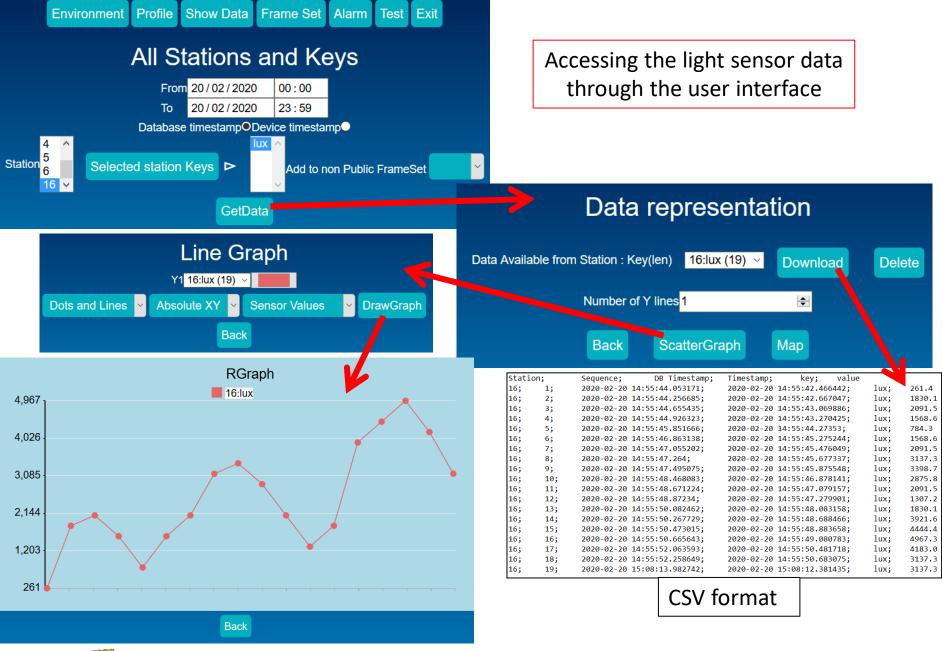
Menu differences



Environment Profile Show Data Frame Set Alar	m Test Exit
	Insert Data
	Insert Parameters
	Send Alarm
	Get Termite - USB Serial Terminal
	Get Android App

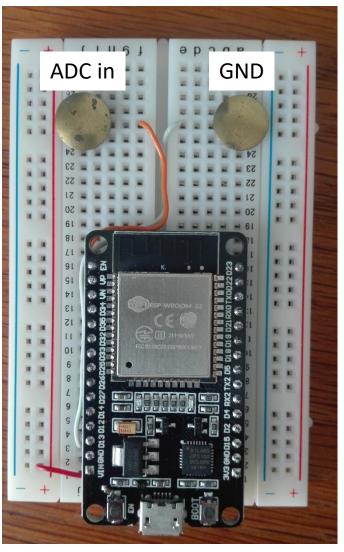
The Android App is a Station – it uses the light sensor, and the GPS sensor

Demo – is a (Other) Profile


- 1 First use other Demo
- 2 Then use the other Profile you created

•	
006	▼⊿ 🗎 1:11
	Station id Name
Name	Pc version
Station Name	
	NEW STATION
	1
Creates/activates the	station in the system
(if the station exists t	he button will not show up)

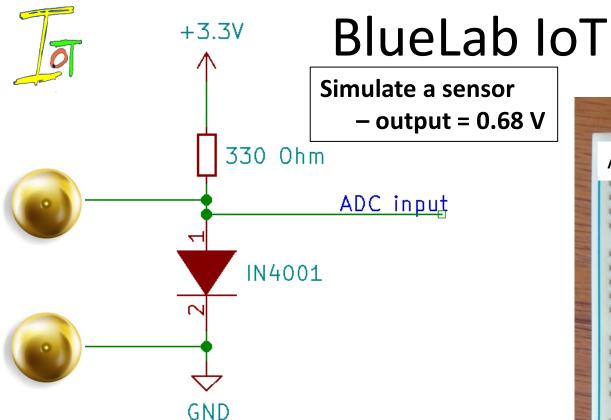
Light sensor 🌣 🖻 🍥 🖀 🕨 ▼⊿ 🗋 3:08 • " 9 🔽 🛔 🛔 1:32 BlueLab_lot 0 Light Sensor 0 ▼⊿ 🗋 2:53 Station id 16 Altitude Bearing ShowData - BlueLab IoT - 2019 Name Pc version LIGHT SENSOR Light Sense Latitude Longitude -122.0840000000002 GPS SENSOR Speed Time Accuracy 20.0 Two exclusive sensors Provider The graph is refreshed every 10 samples BlueLab application ◄ must have location ◀ permit and GPS on to work as a GPS sensor


Connect USB cable to Station Use terminal Termite (or equivalent)

Current Configuration > s Module Satus UserContactType: #O# UserContact: #ICONS2020# UserPassword: ## SSID: #my_ssid# SSID_PWD: #my_ssid_password# Module Name: #ESP32-6#

Touch contacts with fingers

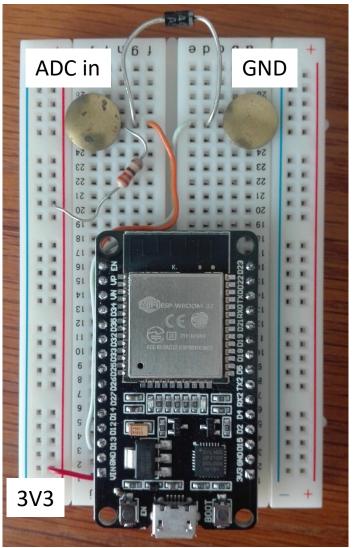
ADC input



Termite port configuration

Port configur	ation		Transmitted text	Options	
Port	COM5	~	O Append nothing	Stay on top	
Baud rate	115200	~	Append CR Append LF	Quit on Escape	
Data bits	8	\sim	 ○ Append CR-LF ✓ Local echo 	Close port when inactive	
Stop bits	1	\sim	Received text	Plug-ins	
Parity	none	\sim	Polling 100 ms Max, lines	Auto Reply	
Flow control	none	\sim	Font default ~	Hex View	
Forward	none	~	Word wrap		

To access text written by the station program on the serial interface



GND ESP8266 dev kit – (ADC – 10 bits -> 0-1023) ESP32 dev kit – (ADC – 12 bits -> 0-4095)

- 1 Add data parameters to correct sensor values
- 2 Create frameset and share to public
- 3 All public data graphs of the sensor should show values close to 0.68V

220k(1%)

R14 100k(1%)

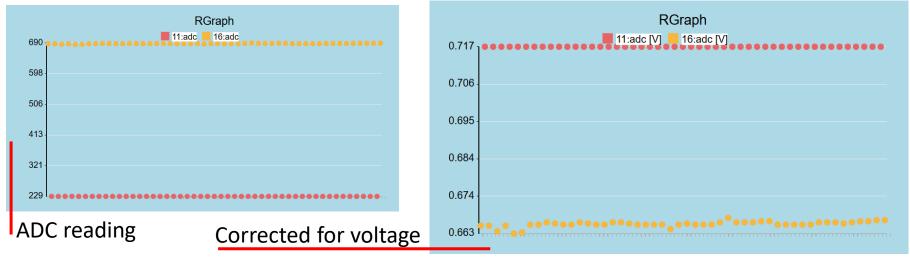
ADC

Voltage divider of the development kit ESP8266

ESP8266 – voltage Ref 1V

- Resolution 10 bits
- Voltage divider 0.3125 attenuation of 3.2
- Value = (3.2 * 1) * adc_in /1023 = 3.13e-3 * adc_in

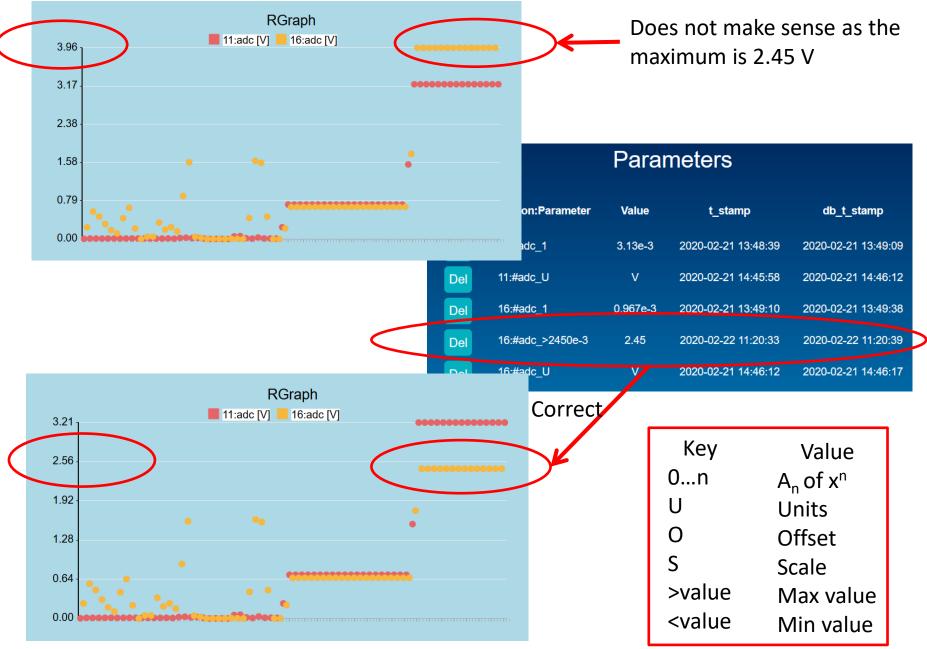
ESP32 – voltage ref 1.1V


- Default Resolution 12 bits
- Default attenuation of 11dB (3.548)
- Value = (3.548 * 1.1) * adc_in / 4095 = 0.967e-3 * adc_in

	Parameters				Insert Parameter	
Delete	Station:Parameter	Value	t_stamp	db_t_stamp	Station id 16 ∨ Seq number 0 timeStamp Fri Feb 21 2020 14:43:25 GMT+0000 (Western European Stand	
Del	11:#adc_1	3.13e-3	2020-02-21 13:48:39	2020-02-21 13:49:09	key #adc_1 value 0.967e-3	
Del	11:#adc_U	v	2020-02-21 14:45:58	2020-02-21 14:46:12		
Del	16:#adc_1	0.967e-3	2020-02-21 13:49:10	2020-02-21 13:49:38	ESP8266	
Del	16:#adc_U	V	2020-02-21 14:46:12	2020-02-21 14:46:17	ESP32	

BlueLab IoT - FrameSets

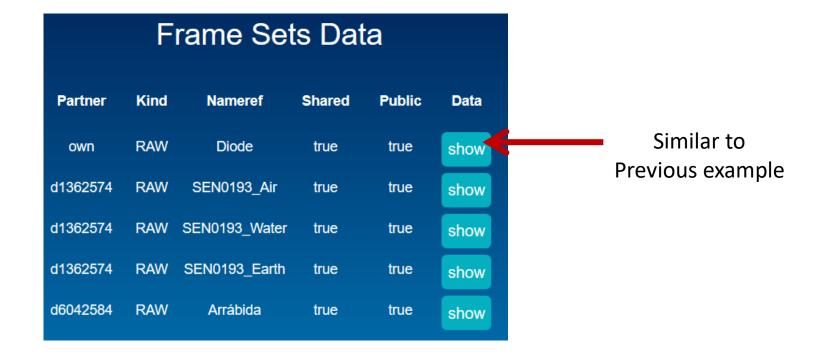
ESP32

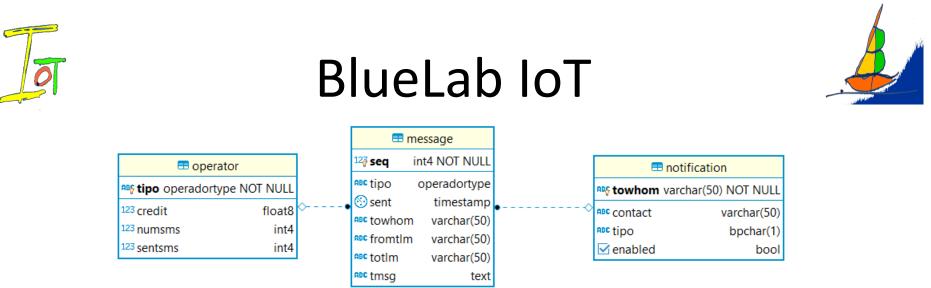

When VDD_A is 3.3 V:

- 0 dB attenuation gives full-scale voltage 1.1 V (100 and 950 mV)
- 2.5 dB attenuation gives full-scale voltage 1.5 V (100 and 1250 mV)
- 6 dB attenuation gives full-scale voltage 2.2 V (150 to 1750 mV)
- 11 dB attenuation gives full-scale voltage 3.9 V (150 to 2450 mV)

At 11 dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.

(see literature; readings are not linear above 2450mV)





Vitor Vaz da Silva – ICONS 20202

Alarm service structure

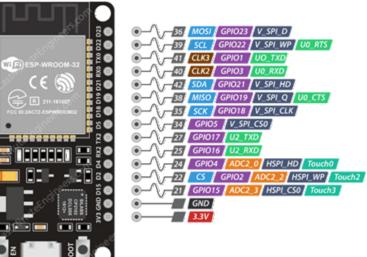
A station may send alarms that are sent by e-mail or phone to the user

There is a minimum time between consecutive alarms

The user can enable or disable the sending of alarms

Tensilica Xtensa 32-bit LX6 microprocessor

2 cores (ESP32-SOWD only one) 240 MHz


Ultra low power co-processor: Allows ADC conversions, computation while in deep sleep.

- Wi-Fi: 802.11 b/g/n/e/i (802.11n @ 2.4 GHz up to 150 Mbit/s)
- Bluetooth: v4.2 BR/EDR and Bluetooth Low Energy (BLE)
- Internal memory: ROM: 448 KB, SRAM: 520 KB, RTC fast SRAM: 8 KB, slow : 8 KB, eFuse: 1Kbit
- External flash & SRAM: up to 4 x 16MB
- Rich peripheral interface with DMA, capacitive touch, ADCs, DACs, I²C , CAN 2.0, SPI, I²S, RMII,

- IEEE 802.11 standard security
 - WFA, WPA/WPA2 and WAPI
- Secure boot
- Flash encryption
- 1024-bit OTP, up to 768-bit for cu

Cryptographic hardware acceleration: AES, SHA-2, RSA, ECC, RNG

ESP32

Built-in low power 32-bit MCU @ 80MHz

512kB Flash Memory

Power Supply: +3.3V only

Current Consumption: 100mA

I/O Voltage: 3.6V (max)

I/O source current: 12mA (max)

Supports Deep sleep (<10uA)

UART TX / UART RX 1200-115200

802.11 b / g / n wireless standards;

Serial WiFi transmission rate: 110-460800bps

WiFi operation current:

continuous transmission operation: ≈70mA (200mA MAX)

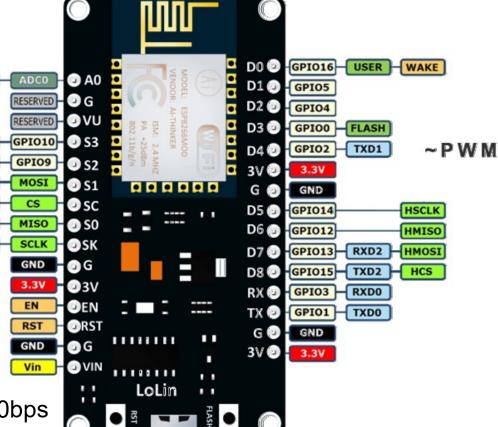
TOUT

SDD3

SDD2

SDD1

DCMD


SDDO

SDCLK

idle mode: <200uA;

Can be used as Station or Access Point or both combined

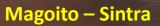
TCP / IP protocol stack, One socket - Standard TCP / UDP Server and Client;

ESP8266

Future

- Cron job for data maintenance, clean delete, compression of old unshared data
- Improve data parameter for sensor calibration history
- Add data processing for level P1 (processed data)
- Allow sharing to restricted group of users
- Allow user to use its own database
- Use other Hardware ex:Thingy:52
- Improve Site
- Different graph types
- Develop Distributor
- Clean code
- Add BlueLab IoT to Arduino Library Manager

References


- 1. <u>https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/</u>
- 2. <u>http://esp8266.net/</u>
- 3. <u>https://randomnerdtutorials.com/esp32-pinout-reference-gpios/</u>
- 4. <u>https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/</u>
- 5. <u>http://esp32.net/</u>
- 6. <u>https://asksensors.com/doc/control-esp32-https.html</u>
- 7. <u>https://github.com/asksensors</u>
- 8. <u>https://www.ubeac.io</u>
- 9. <u>https://hook.ubeac.io/</u>
- 10. <u>https://temboo.com</u>
- 11. https://thinger.io/
- 12. <u>https://docs.thinger.io/devices/arduino</u>
- 13. <u>https://github.com/NordicSemiconductor/Nordic-Thingy52-FW</u>
- 14. <u>https://www.nordicsemi.com/Software-and-tools/Prototyping-platforms/Nordic-Thingy-52</u>
- 15. <u>https://techbeacon.com/app-dev-testing/67-open-source-tools-resources-iot</u>
- Radi, R., Murtiningrum, M., Ngadisih, N., Muzdrikah, F. S., Nuha, M. S., & Rizqi, F. A. (2018). Calibration of Capacitive Soil Moisture Sensor (SKU:SEN0193). In 2018 4th International Conference on Science and Technology (ICST) (pp. 1–6). IEEE. <u>https://doi.org/10.1109/ICSTC.2018.8528624</u>
- 17. https://www.w3.org/WoT/IG/wiki/images/9/9a/10N0536_CD_text_of_ISO_IEC_30141.pdf
- 18. <u>https://www.postscapes.com/internet-of-things-protocols/</u>

Thank you

