
1

On the Use of Websockets to Maintain

Temporal States in Stateless

Applications

Josefa Gómez, Abdelhamid Tayebi, Juan Casado

Computer Science Department.

University of Alcalá

28871 Alcalá de Henares. Madrid.

Email: josefa.gomezp@uah.es

ACCSE 2020 International Conference on Advances in Computation,

Communications and Services

September 27, 2020 to October 01, 2020 – Lisbon, Portugal

2

Presenter

Josefa Gómez Pérez was born in 1984. She received the BS and MS in

Telecommunications Engineering from the University Polytechnic of Cartagena,

Spain, in 2005 and 2007, respectively, and the PhD in Telecommunications

Engineering from the University of Alcala, Spain, in 2011. She has worked as

an assistant professor since 2012 at the University of Alcalá. She also worked

as a faculty researcher at the Hong Kong University in 2011 and at the Instituto

de Telecomunicaçoes of Lisbon in 2014. She has participated in 37 research

projects with Spanish and European companies. She has published 23 papers

in peer-reviewed journals, a book, two book chapters, and more than 40

conference contributions at national and international symposia. Her research

interests are optimization and analysis of antennas, design of graphical user

interfaces and the study of propagation for mobile communications or wireless

networks in both outdoor and indoor environments.

3

Outline

1. Introduction.

2. Experimental results.

3. Practical use of websockets in a web-based application.

4. Conclusions.

4

Introduction

• This paper studies the use of Websockets to maintain temporal

states in stateless applications.

• Concretely, it is used in a web-based application that calculates

the propagation loss in outdoor environments.

• The reasons why Websockets are used and its limitations are

discussed.

• A comparison with other similar technologies is also included.

5

Introduction

• Current web applications require fast communication between the

server and the clients to produce close to real time updates on the

web interface.

• If feedback is not received about the progress of the computations

performed by the server, the user experience breaks apart.

• This also is applicable to the waiting time between a user action

and the webpage displaying the requested information.

• REST (REpresentational State Transfer) and WebSockets will be

analyzed, theoretically and experimentally, as the possible

communication components to solve this problem.

6

REST

• Nowadays, lots of web applications and web services are based

on the REST architectural style.

• REST has become very popular due to its simplicity and the fact

that it builds upon the HTTP

• However, it has some disadvantages such as the lack of saving

the stateful information between request-response cycles.

• This implies that it is hard to implement any type of services where

the server updates the client without the use of client-side polling

of the server or some other type of web hook.

• Consequently, any state management tasks must be performed or

initiated by the client.

7

REST

• The disadvantages of using REST to maintain temporal states are

mainly three.

1. The server must use several TCP connections for each client: one

for the client to send an initial request to the server where the

operation to perform is described and a new one for each message

that contains the progress or fraction of performed work.

2. The wire protocol has a high overhead, with each client-to-server

message having an HTTP header.

3. The server is forced to maintain a mapping from the outgoing

connections to the initial computation request to track which

progress information must be sent to each client.

8

Websockets

• WebSockets is a new protocol that uses a single TCP connection

for traffic in both directions that allows a bidirectional, full-duplex,

persistent socket connection between a web page and a remote

server. It is supported by all major web browsers.

• Based on the two-way communication connection, the server can

receive and process data, and can also send data back to the

browser.

• Also, communication is more efficient than using HTTP if we focus

on the size of the message and on the speed, especially for large

messages, since in HTTP, for example, you have to send the

headers in each request

9

Experimental results

• To empirically test the performance differences between

WebSockets and REST communication protocols, a

demonstrative application was built.

• The design of this application aims to make the comparison as fair

as possible, to let us inspect the strengths of both protocols.

• The server and the client communicate with REST or WebSockets

allowing us to catch and dump the communication traces and

inspect the transmitted packages with applications like Tcpdump

or WhireShark.

10

Experimental results

• Performing the same computations, the following data have been

collected with REST and WebSockets as communication

protocols:

REST WebSockets

Packets 135.098 44.976

Transmitted data 27.634.885 bytes 4.723.849 bytes

Communications 22.481 22.480

Mean Time 86s 778ms 35s 226ms

11

Experimental results

• In average, using WebSockets, there are two packets exchange

between the client and the server, which leaves a total of 16

packets for stablishing the connection (8 packets) and closing it (8

packets).

• With REST, there are an average of six packets exchange

between the server and the client per communication. This

quantity should have been eight packets, but the libraries used try

to reuse TCP connections by not always sending ‘FIN’ packets in

order to save resources.

• WebSockets is able to use a smaller header because the header

is sent once, when the connection is stablished, and since the

connection is never closed there is no need to resend it on every

data transmission along that same connection.

12

Experimental results

• The benefits of WebSockets not only can be seen on the amounts

of data and packets transmitted but also in the time taken. Using

REST, the communication will take more than double the time

than with WebSockets.

• REST is a more efficient protocol for single sporadic data

transmissions than WebSockets.

• On the other hand, WebSockets is more efficient for multiple

communications even if their number is small.

13

Practical use of websockets in a

web-based application

• Authentication is also simplified by using Websockets.

• When using WebSocket, authentication is performed when the

connection is established, so future requests under the same

channel do not need to be authenticated again.

• This method greatly simplifies the authentication process.

• Therefore, Websockets improves the security of the system

because there is no need of passing user credential in every

request.

14

Conclusions

• WebSockets is a great protocol that solves three

communication problems:

1. Sending multiple packets of data between the server and the

client with a single communication negotiation required.

2. Creating a channel between a client and a server through which

the client can receive notification from the server without polling.

3. Granting a stable connection between a client and a single

instance of a replicated server that is behind a load balancer.

15

Thank you for your

attention!

Josefa.gomezp@uah.es

