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Motivation
- There are many MOOC 

platforms like Coursera, Edx, 
Udemy, etc.,with millions 
courses.

- These MOOC plaform 
attracts hundred millions 
learners.

→ How to recommend users to 
choose the appropriate course.
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From https://www.classcentral.com



Motivation
- There are few works about MOOC Recommendation system 

using deep learning. 
- Neural Autoregressive Distribution Estimator for Collaborative 

Filtering(CF-NADE) and Deep Matrix Factorization (DMF) 
have not been used in Recommendation system.

→ Apply the CF-NADE and DMF model with the improved loss 
function to the MOOCs suggestion.

5

Presenter
Presentation Notes
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MOOC Recommendation
with Deep Matrix Factorization
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Notation
DMF is proposed by Xue et al., 
2017 [1].
Assume:
- Set U includes M users: 

U={u1,u2,…,uM}.
- Set V includes N items: 
𝐕𝐕 ={v1,v2,…,vN}.

- R ∈ ℝ MxN is the rating matrix 
with Rij is rating of user i for item 
j, unk is unknown rating. 

- i, j is the user and item in U, V
8



Interaction matrix

Rating interaction matrix. 

Yij=�
0, if Rij=unk
Rij, otherwise
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Hidden Layers
● Row i of matrix Y is Yi∗, 

column j of the matrix is Y∗ j. 
This model has two MLPs, 
one for users and one for 
items.

● Multi-layer perceptron (MLP) 
uses. 

l1=W1x
li = f Wi−1li−1+bi ; i=2,…N−1

y = f WNlN−1+bN
● The activation function is 

ReLU.
f x = max 0,x
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Hidden Layers
In other words, the user and 
item vector are mapped into low 
dimensional vectors in latent 
space using two MLPs.
pi= fθN

U …fθ3
U WU2fθ2

U Yi∗WU1 …

qj= fθN
I …fθ3

I WV2fθ2
I Y∗j

T WV1 …
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Cosine similarity

Then, we calculate the 
cosine similarity of two latent 
representations pi and qj.

cosine pi,qj =
pi

T.qj
∥pi∥.∥qj∥
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Normalized cross-entropy loss function

● Normalized cross-entropy loss function (NCE) combines 
cross-entropy and max rating [1]:

LNCE = −∑ i,j ∈Y (
Yij

max Rating log�Yij+ (1−
Yij

max Rating ) log 1−�Yij )

●
Yij

max Rating ∈ [0;1], so it is called Normalized cross-entropy 

(NCE) 
● In our experiment, we use max(Rating) = 5 because 5 is 

the max rating.
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L2 loss function
● L2 loss function fits in solving the overfitting problem.

L2 =
∑i

m wi
2

2

Where:

- wi
2=∑j

N wij
2, and wij is the weight of the training instance (i,j); 

- N is the dimension of wij
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Hybrid loss function
● Hybrid loss function combines Normalized cross-entropy 

loss function and L2 loss function.

● Hybrid loss function:
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Notation
● CF-NADE is proposed by Zheng et al., 2016 [2].
● Assuming:
- There are M courses and N users, the user ratings are 

from 1 to K. 
- Each user rated D courses and D≪M. With any user u, 

we will have the rating vector ru= rmo1
u , rmo2

u ,..., rmoD
u , 

where o is the permutation of (1, 2, …, D), rmoi
u ∈ 1,2,…,K

is present for the rating of user u and item moi.
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CF-NADE basic model 
(NADE)
● The probability of the rating vector

p r =�
i=1

D
p rmoi

rmo<i
● Hidden presentation in a hidden 

layer

h rmo<i
=g c+�

j<i
�
k=1

rmoj
W:, moj

k
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CF-NADE model 
with sharing parameters

20

smoi
k rmo<i

=�
j≤k

bmoi
j +Vmoi,:

j h rmo<i
smoi
k rmo<i

=bmoi
k +Vmoj,:

k h rmo<i
→

h rmo<i
=g c+∑j<i W:, moj

rmoj → h rmo<i
=g c+�

j<i
�

k=1

rmoj
W:, moj

k

Presenter
Presentation Notes
The CF-NADE model was proposed by Yin Zheng in 2016, developed from the NADE model, and can be used in the recommendation system. Basic CF-NADE has 3 layers (input layer, hidden layer, and output layer), and the basic CF-NADE can be extended to have one more hidden layer and become a deep neural network. Equation (13) shows the probability of the rating vector r. Where  r  m  o <i   =  r  m  o 1   , r  m  o 2   ,..., r  m  o i−1     is the first i - 1 elements by index o of r.



Ordinal Cost Function

● Assume that user rates k, then the rating from 1 to k has 
priority increase, and the value from k to K has priority 
decrease.

p rmoi
=k rmo<i

=�
j=k

1 exp smoi
j

∑t=1
j exp smoi

t
�
j=k

K exp smoi
j

∑t=j
K exp smoi

t

● Cost function:
Chybrid= 1−λ Creg+λCord
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Extend CF-NADE to a 
deep neural network
● When added a hidden layer to 

the model, the calculation formula 
of that layer:

h l rmo<i
=g c l +W l h l−1 rmo<i

where l = 2, …, L correspond to the 
hidden layers and the conditional 
probability p rmo<i

is computed 

based on h L rmo<i
. 
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Dataset
● Travel-well dataset [3] is used for our experiment. 

● The Travel-well was collected from the LRE portal includes 

20 content providers from Europe and elsewhere. 

● In our experiment, we only use rating information with 75 

learners. 

#learners (#users) #courses (#items) #ratings density

75 1608 2156 0.0178

24
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Metric
● Normalized Discounted Cumulative Gain (NDCG) evaluate 

the ranking performance of the relevance courses [4].

NDCG@K=ZK∑k=1
K 2ri−1

log2 i+1
where ZK is the ideal ranking has a value of 1; ri is the graded 
relevance of item at position i. 
● Root mean square error (RMSE).

RMSE=
∑i,j

M,N rij−r̂ij
#ratings
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Parameter settings
● Hybrid-DMF, DMF
+ Hyperparameters: learning rates = 10-4, max epoch = 30, batch size = 
256, early stopping = 5, the latent factor = 64.
+ Requirements: python = 3.7.6, Tensorflow-gpu=1.5.0, numpy = 2.1.0.

● CF-NADE
+ Hyperparameter: learning rate = 10-3, Hidden unit = 500, epochs = 
20. 
+ Requirements: Python 3.6.8. Dependence packages: Tensorflow
(2.1.0), Tensorflow-gpu (2.1.0), Keras (2.0.8), Pyspark (2.4.1). 
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Results
We use five algorithms for evaluations (3 classical algorithms
and 2 deep learning models):
+ Neighborhood-based collaborative filtering methods on
item-based (IBCF) [5]
+ Neighborhood-based collaborative filtering methods on
user-based (Pearson correlation) [5].
+ Single value decomposition (SVD) [6]
+ Probabilistic Matrix Factorization (PMF) [7]
+ AutoEncoder based on Collaborative Filtering (AutoRec)
[8].
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Results - NDCG

28

K Hybrid-
DMF

CF-
NADE

Auto
Rec SVD

1 0.3467 0.3554 0.0019 0.4927

5 0.3945 0.5505 0.0039 0.4875

10 0.4701 0.6606 0.0040 0.4833

20 0.5000 0.7694 0.0043 0.4800

30 0.5493 0.8225 0.0059 0.4789

50 0.5762 0.8665 0.0070 0.4770

• Detailed results with the NDCG@K metric with K = [1, 
5, 10, 20, 30, 50] of the Hybrid-DMF, CF-NADE, 
AutoRec, SVD, IBCF and UBCF models. 



Results - RMSE

• Detailed results with the RMSE of the AutoRec, SVD, 
PMF, Hybrid-DMF, CF-NADE models. 

• Hybrid-DMF and CF-NADE gives the best result. 
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Models/Algorithms RMSE
AutoRec 2.50037

SVD 0.9063
PMF 0.8651

CF-NADE 0.8283
Hybrid-DMF 0.7916
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Conclusion and Future works
● We improved the DMF model with a new loss function
(Hybrid-DMF) and combined with the CF-NADE model for the
MOOC recommendation system. The results show that the
proposed approach is better than the other models with
RMSE and NDCG@K measurements when evaluated on the
travel-well data set.

● In the future, we will continue to improve DMF with some
other loss function and integrate implicit feedback such as the
click, tagging, side information. Improving CF-NADE can be
done by implicit feedback information, such as user tagging
for each course to improve the accuracy of the model.
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