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Practical Quantum Computers

Requirements for a practical quantum computer:

*scalable physically to increase the number of qubits;
*qubits that can be initialized to arbitrary values;
equantum gates that are faster than decoherence time;

euniversal gate set;
*qubits that can be read easily.




Quantum Computing

“A Quantum computer will operate differently from a Classical one.
It will be involved w physical systems on an atomic scale,

eg atoms, photons, trapped ions, or nuclear magnetic moments”

W 'Y 05

... R. Feynman 40 years ago

Quantum

Gate '\/ S

Unitary |:> Reversible

Decoherence 1s the loss of information from a system

into the environment. Entanglements are generated
between the system and environment, which have the
effect of sharing quantum information with—or

transferring it to—the surroundings Reduced with Infinite Dimensional Direct
Adaptive Control
(And Quantum Error Correction)




Small Quantum Systems

m We can begin to experiment with just one
electron, atom or small molecule

m Need:
.t Precise control
Isolation from the environment

Simple small systems : single particles or
small groups ot particles

David Wineland NIST

Physics Nobel Prize 2012
S. Haroche & D. Wineland
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Quantum Basics
happens

(Dirac & Von Neumann

bounded /unbounded
self —adjoint

Observable A: X —2mad

Orthonormal
Higen —Basis for X

AX = kz_;/mk gx,g%)qﬁlg = kz_;/mkpkx & o (A) =44, Ay, Ay

R x Observed
| Values of A

Pure States: ¢, elgenfunctions of A

State ¢ € X complex infinite-dimensional separable Hilbert Space:

(6,9)=1orlp=1= ¢ = c.o& 6 = Je.| =1

"A (mixed) state is alinear combination of pure states"
Special Case: Quantum SPIN Systems are FINITE Dimensional




Dynamics: Schrodinger Wave Equation

¢ € X complex Hilbert Space

0

k=1

ih%z H, ¢ Discrete Spectrum o (H,) = {4}

e
Hamiltonian Energy
Operator

=90 = Ug) #0)=e""3(0)=Y e * (90,4, with (4,4) =0,

Unitary Group

||</5(t)||2 = Probability Distribution for the Energy
in the Quantum State ¢(t) = ¢(t)] =||¢(0))|

> - S Marginally
= ..|[¢(t)|” = Probability Distribution for the Energy Stable

In the Quantum State ¢(t)
= ¢V = ¢ (O



QuantumMeasurement

The Real
Heisenberg

The interpretation of

Quantum Measurement A quantum measurement is an

is still a _controversial SaleplllsglEgd entanglement with the
part of Quantum Theory environment ( measuring

device)

X =X ® X, e
¢:Zak|(¢ks®¢|M)¢h®W The Other
K,

Heisenberg

Heisenberg Uncertainty Principle ;
J Y P Back Action

(A2 (AP)* = (2, PL#.)| = ()?1h =10
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Quantum Collapse:

Ontology vs Epistemology
bounded /unbounded

Observable A: X —=-adoint

Ax:i/lk (x99,

B X

Pure States ¢, elgenfunctions of A

Max Born

An observation/measurement of the observable A produc

a collapse of the wave function for amixed state ¢ = Z C D,
- k=1

into one of the pure eigenstates ¢, (Ag, = A4, )with probability |c, \2

Sally Shrapnel, Fabio Costa, & Gerard Milburn , “Updating the Born Rule”,
New Journal of Physics, 20, 2018 (a linear quantum probability rule)




Control of Quantum Master Equation

A density operator describes a quantum system

In a mixed state, a statistical ensemble of several

uantum states
p >0, symmetric ( Hermitian) operator with Tracep =1

p= Z p. ¢ (¢..); Trace(p) = Z P = 1 (convex combination of pure observables)
%/_J

@ g,

5‘)___[’) H]———(pH Hp)——[H ]

p = density operator

H=H,+H + H + H

environment int eractions control




Master Equation and Expectation

Master Equation

0 i
L b=——[p.H
5’[p h[P o]

= p(t) =U. (1) p(t)U, (t) where U (t) =e " ° unitary group

Expectation of p=(p) = (4, pp)

0 0 i |
=2 (p)= = (6.p0) =~ (4.[Ho. 1) == ([Ho: )

() = (@, Uy (1) p(0)U, (1)4) = (U, (t)g, p(0)U, (1)$) = (p(0))




[a'il.“Siplicity” via Infinite Dimensional Spaces
74
[ OX

- AX + Bu = Ax+Zlqui;Agenerates aC, semigroup
=1

X(0)=x%x,e D(A)c X
y=Cx=[(c,X) (6X) - (GnX)]ihi,c, € D(A)

.

= X(t,w,) =U(t)X,;Vt =0
%/_/

Evolution
in X

J. Wen & M.Balas, “Robust Adaptive
: : : : N Control in Hilbert Space 7,
Eliminate all the special properties of L W A
Applications, Vol 143, pp 1-

. 26,1989.
C, —Semigroup of Bounded OperatorsU (t) :
J. Wen & M.Balas ,"Direct Model

KU (t + S) =U (t)U (S) (Sernl group property) Reference Adaptive Control in Infinite-
d Dimensional Hilbert Space," Chapter in
aU (t) = AU (1) =U (t) A( AgeneratesU(t)) ?Esillc\at;(f)(r)llﬁl(if Adaptive Control

. K. S. Narendra, Ed., Academic Press,
U (t)X, —55—> %o (continuousat t = 0) 1987
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Semigroups

[ Closed Linear }
Operator

OX
Solvel ot = > = X(t) =U (1),
X(0) = x, € D(A)

C, —Semigroup
U (t) : X — X bounded operatorst > 0
U (t)x— X

t—>0+

Generator : Ax =lim with D(A) = {x/lim,_,,. exists }densein X

t—>0+

LU (t)) = (Al — A" = R(1, A) Resolvent Operator
LL(R(A, A) =U (t)

LaPlace Transform {




Spectrum of A

Resolvent Set p(A) ={1/R(A, A): X — X bounded linear op on X}
SpeCtrum G(A) = p(A)C — Gpoint (A) - Gcont (A) - Gresidua] (A)

G oo (A) = A1 A — AisNOT 1-1}={1/3¢ # 05 ¢ = Ag}
o (A) ={1/Al — Aisl-1,butitsrangeisonly densein X }
O, au (A) = {41 Al — Ais1-1, but rangeis a proper subspace of X |

Theorem (Gearhart,Pruss,& Greiner) : Resolyent
Assume A generates a C,-semigp U (t)on a Hilbert space X. )
U (t) iIsexponentialy stable < Redl >0= 1 € p(A) and

IR(Z, A)|| <M < oo, for al such complex 4




State Estimator-Based Feedback Control
of Infinite Dimensional Systems

Infinite Dimensional Plant

a—X:AX+Bu
ot

y=Cx;X(0) e D(A) = X

Infinite Dimensional Feedback Controller

Practicality: Need a
Realizable
Finite-dimensional
Controller

M. Balas, “Exponentially Stabilizing Finite Dimensional Controllers

for Linear Distributed Parameter Systems: Galerkin Approximation of
Infinite Dimensional Controllers’, JMAA, Vol 117, 1986
L. Arccardi, Quantum Kalman Filters, Mathematical System Theory, Springer, 1991




Model Reduction for Control
Reduced Order Model

M. o=

Residual Subsystem

Closed-Loop
Stabi I ity’?

ROM-Based

Controller j/
Instability

Compensation




Direct Adaptive Model Following Control
N The Godfather:} (Wen-Balas 1989)

K.S.Narendra

m

Reference
Model

Infinite
Dimensional

(Upn» X, €,) Known Signals

Adaptive
Gain Laws




Direct Adaptive Persistent Disturbance Rejection
(Fuentes-Balas 2000)

Reference
model

Disturbance

Generator '

" Plant
o

Lo

(Uns Xinr €y géB ) Known Signals

Disturbane Basis

Adaptive
Gain Laws




Linear System Strict Dissipativity

_ V(X)=(x,Px)>0;Vx=0
Energy Storage Function :
———— V(0) =0

A Linear Dynamic Infinite-Dimensional System 1s STRICTLY DISSIPATIVE when

Bounded Linear Op
SHf —Adjoint

Jp: X e > X HilbertSpace

Prin ”X“Z SV(X) = (PX, X) < o ”)(“2 P DISSIPATIVE when a=0

(Re(PAx, X) E%[(PAX, X)+(x PAX] < —a | ; Wxe D(A)

W(x)

PB=C

1 dVv
=~ — = Re(Px,Xx) + (x,PBU) < (y,u) - O‘HXHZ
2 EL — — 3 _/ — — J E;Xterna,l H,—/
Energy <-a|x] (y.u) Power ::)nit;esrigzltlgd

Sorage
Rate Power




Strictly Dissipative (ASD) Systems
(A, B,C) ASD means
3G, > (A. = A+ BG.C,B,C) Strictly Dissipative

Linear

u=G.y+w

Almost StflCtly Dis Sipative e ———
@ System

G.y

G.

Strictly Dissipative System

Need not know
the value!




Direct Adaptive Control Theory
Is Not Complicated !

Adaptive Regulation

OX
—=Ax+Bu
Infinite - Dimensional Plant < ot y

y=Cx;x, € D(A) c X

X

t—

Controller

G=-yyo.0>0

Use ONLY
Outputs &
Know Almost
NOTHING
about the Plant




For Finite & Infinite
Dimensions

All Roads Lead To Rome

X _ px+Bu- Ax+z
at i=1

X(0) =%, D(A) c X
y=Cx=[(c,x) (¢;,¥) . (¢, X[

with(A, B,C) Almost Strictly Dissipative (ASD)

u=G(t)y
Gt)=-yWo;0>0

= Adaptive Controller {

produces x(t) ———0

with bounded adaptive gains G(t)

Control Porno




LINEAR ASD:

High Frequency Gain is Sign-Definite (CB>0)

Open-Loop Transfer Function is Minimum Phase

(i.e. Transmission Zeros are all stable)

(== | Almost Strictly Dissipative

. . |u=Gy
Adaptive Regulatlon{ . .
G=-yWo,0>0

j> produces X(t) ————0
with bounded adaptive gains G(t)




Our Infinite-Dimensional Version of the “Two
Simple Open Loop Properties” Theorem

% — Ax+ Bu = Ax+2biui;Ageneratesa C, semigroup
i=1

X(0)=x%x, e D(A)c X
y=Cx=[(c,,X) (C;,X) ... (c,,X)];b,c; e D(A)

\

Theorem: Def : A, e Cisatransmissionzero of (A B,C)when N(H (L)) = {0}

A-1 B
where H(/‘L)E{ c O}: D(A)xRY — XxR" closed linear operator

(A, B,C)isAlmost Strictly Dissipative if and only if
cB=|(c;,h)] >0 and Transmission Zeros(AB,C) = {1 /N(H (1)) {0} }= 0 (A,) "stable’

(i .e.,g generates exponentially stable semigroup)

Mark Balas and Susan Frost, “Robust Adaptive Model Tracking for Distributed Parameter Control of Linear Infinite-dimensional
Systems in Hilbert Space”,|IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014.




Adaptive Model Tl’ﬂCkiﬂg Reference Model
in the Presence

of Disturbances

Up = 0L,

A
NV %

Controller

Q) €—G-[c. & G, G|=—he, U yndo)

Can also be
Infinite
Dimensional

\

%




Adaptive Control Law

U= gBuum + GmxrTJ +  Gpgy + G

s . . . . W
M odd T racking Disturbanae Rgection  Stabilization

where

.

G, = —eyumau,a >0
Gain
Adaptation

Laws

G ——exX o 0, >0

y ' m~ m?

p =€ ¢DGD;GD >0

G ——eyeyae,a >0




Existence of Ideal Trajectories

Find Bounded Linear Operators S, & S, >

{x* = S/ X, + élzum + 5,2, = Sz with 7= | u

u, =S, x_+S,u +S.z, =S,z

AS,+BS,=SL_+H,
CS,=H,

satisfying M atching Conditions {

ix* = AX. + Bu. +T'u,
= < Ot

Y. =CX. =y,
Theorem: Assume CB nonsingular.
(S,, S,) satisfying the M atching Conditions
< The Spectrum of the Reference M odel & Disturbance Generator
shares no common points with
the Transmission Zeros of (A,B,C):o (L., )N Z(A,B,C)=¢

Mark Balas and Susan Frost, “Robust Adaptive Model Tracking for Distributed Parameter Control of Linear Infinite-dimensional
Systems in Hilbert Space”,|IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014.




Reference Model:
Adaptive Quantum Closed Ideal System

Model Tracking to Reduce
Decoherence

QND Measurement: Quantum Filtering
With Unitary Operators and Projections

Adaptive Quantum Controller

&G:[Ge Gu Gm GD]:_h(ey’um’ym’¢D)




Robust Adaptive Control : F,)
e

Sub Sp ACC A class of open quantum systems
All quantum trajectories that admits a linear subspace
attracted to a of H such that
Decoherence-Free Subspace S the restriction of the dynamical semigroup to

the states built over S is unitary.

Convergence to a Decoherence-Free

This means that the Quantum Environment
lies 1n

Such a subspace allows for error-avoiding
encoding of quantum information, but
assumes the Environment acts the same

on all qubits
....... P. ZANARDI, and M. RASETTT 1997

M. Balas, “Reduction of Decoherence
in Quantum Information Systems
Using Direct Adaptive Control

of Infinite Dimensional Systems”,

d(p(t),S) =inf,_Jlp(t) - x| ———0 ICAS 2020




Quantum Cognitt
QuantumProbability:

¥

EventSpace: X complex (infinite-dimensional, separable) Hilbert pace
X =spa{,,d,, @, ...} orthonormal basis (¢, ,¢ ) =9,
Events = Closed Subspaces S of X (or their Projections)
S, = span{ ¢, } basic subspace

Superposition
of Projections

Mixed States: x=i(x,¢k)¢k &||X||2
k=1

B X

Quantum Probability:

p(xe S) = [RxX" =|(x 4| =|c|”

Model of
Human Decision-Making with

Non-commuting Projections

2019 NSF Proposal: A Quantum Approach to Human Cognition and the
Autonomy Conundrum in Self Driving Vehicles, PI James Hubbard,
Co PIs Theodora Chaspari, Mark Balas




“We don’t know where we are stupid

until we stick our necks out”
Richard Feynman




