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Introduction

I The applications in which a robot should be able to understand what
it sees are countless: human-robot interaction, healthcare, service
robotics, industrial robotics, logistics, connected and autonomous
vehicles.

I The last decade of advancements in deep learning have led to
astonishing results in the applications that respond to the so called
closed-world assumption [KSH12].

I Robots, however, operate in dynamic and uncontrolled environments.
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Figure 1: Randomly sampled batches extracted from 4 different
CIFAR-100 [Kri09] classes. Images in the top row show homogeneous visual
properties while images in the bottom row are characterized by very different
visual properties. Yet, all the batches belong to specific categories. A question
arises: How does the intra-class variability impact a classifier, and how can an
agent (e.g., a robot) recognize and exploit this phenomenon?

I In the presented work, with reference to the classification task, a step
is taken towards relaxing the aforementioned assumption by
introducing a novel framework capable of allowing the refinement of
the classes encoded into a classifier during its operational life.
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Lifelong Learning Framework

I The objective pursued by the definition of the framework is to
theoretically describe the operational life of a classifier trained on a
set of semantic categories or classes labeled by the positive integers
K1 = {1, . . . ,N1}.

I It is therefore natural to define Kt ⊆ N+ as the set of classes encoded
into the classifier at time t.

I Let x ∈ Rd be the features associated to a new sample seen by the
classifier.

I Let Tt ⊆ Rd ×
⋃t

j=1Kj be the set containing all the samples, with
the respective labels, seen by the classifier up to time t.

A model, to function within the defined framework, must be characterized
by the following main ingredients.
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1. A multi-class recognition function Ft : Rd −→ Kt .

2. The additional state information St = {s it}, ∀i ∈ Kt . For each
semantic category, the corresponding element of the set should
contain all the necessary information to compute its intra-class
variability after the classification performed in the previous time step.

3. A formalization of the intra-class variability computation
V : St+1 −→ R.

4. A trigger T : R −→ {0, 1} defined in accordance with a criterion
selected by the designer in order to establish whether class i needs to
be split or not.
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5. A labeling process function Lt : P(T i
t ) −→ P(N+ \

⋃t
j=1Kj), where

P(•) denotes the power set and T i
t = {(x , k) ∈ Tt s.t. k = i}. The

function aims to retrieve the sub-class labels of class i when its split is
triggered. Once the new categories are collected, the classifier class
structure has to be updated.

6. A data retrieval function R : P(Kt+1) −→ P(Rd ×Kt+1). The
function is responsible for retrieving the new data for the incremental
training of the model.

7. An incremental learning function whose objective is to incrementally
update the model by replacing the obsolete per-class recognition
function with the ones related to the new semantic categories.
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Metric for Intra-class Variability

I Let X be the matrix whose columns are the samples, belonging to or
classified as belonging to class i ∈ Kt , seen by the considered model
up to time t.

I If the used classifier belongs to the category of deep models,
φ : Rd −→ Rn can be defined as the function responsible for
extracting deep representations from the generic sample features
x ∈ Rd .

I Let φ(X ) be the matrix obtained applying function φ to X
columnwise.

I The matrix can be thought of as the repeated sampling of a
probability distribution over Rn.
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I The intuition is to link the abstract concept of intra-class variability
to the shape of the φ(X ) sampling in the space of the deep
representations.

I The formulated hypothesis follows: The lower the intra-class
variability of class i , the better the sampling φ(X ) approximates a
hyperball.

I The concept of approximation introduced in the formulated
hypothesis needs to be formalized.
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I A first proposal consists of analyzing the per-component variances of
the random vector φ(x).

I Let Cφ(X ) be the (sample) covariance matrix associated to the φ(X )
data.

I Let σ = [σ2
1, . . . , σ

2
n] be the vector containing the diagonal terms of

Cφ(X ) and σ̃ = [σ̃2
1, . . . , σ̃

2
n] be its normalized counterpart.

I Let H(p) = −
∑n

i=1 pi log2 pi be the entropy of the generic
distribution p = [p1, . . . , pn].

I The proposed metric is defined to be

V (Cφ(X )) = H(σ̃) (1)
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(a) Cφ(X )0◦ =

[
1 0
0 0.01

]
(b) Cφ(X )45◦ '

[
0.5 0.5
0.5 0.5

]
Figure 2: Rotated versions of the same set of samples. As reported by the
captions, σ0◦2

x � σ0◦2
y while σ45◦2

x = σ45◦2
y . The two cases lead to different

aggregated scores.

I A subtle problem arises: rotated versions of the same sampling could
lead to different aggregated scores.
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I A possible solution is inspired by Principal Component Analysis
(PCA) [Shl14].

I Let λ = [λ1, . . . , λn] be the eigenvalues of Cφ(X ) and

λ̃ = [λ̃1, . . . , λ̃n] be the distribution extracted from λ.

I The final proposal consists of modifying (1) into

V (Cφ(X )) = H(λ̃) (2)
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Qualitative Hypothesis Verification

1. The DeepNCM classifier [GCM18] is trained on 20 modified
CIFAR-100 [Kri09] super-classes made of only one randomly selected
sub-class.

2. 5000 unseen samples belonging to the same sub-classes exploited
during the model training are supplied to the classifier.

3. After each classification, the model state is updated and the score
produced by the metric computation is stored.

4. 5000 unseen samples, from randomly chosen sub-classes, different
from the ones of the training phase, are supplied to the classifier and
the corresponding metric scores are computed and stored.
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Figure 3: Metric scores for 2 randomly chosen example classes. Top row reports
computations with the V (Cφ(X )) = H(σ̃) definition while the bottom row reports

computations with the V (Cφ(X )) = H(λ̃) definition. Solid lines show the
“constant” scenario and dashed lines show the “drift” scenario.

I Considering each super-class separately, most cases present lower
metric values, under the same number of classified samples, for the
“drift” scenario confirming the correctness of the formulated
hypothesis with respect to the considered dataset/classifier pair.

V4R Research Group In the Depths of Hyponymy 15 / 19



Quantitative Metric Evaluation

I The separability of the scores associated to the “constant” and
“drift” scenarios is investigated.

I The experiment analyzes the family of threshold triggers acting on
the metric scores after the 10000 sample classifications.

I The investigation is performed by computing the Receiver Operating
Characteristic (ROC) curves for both the V (Cφ(X )) = H(σ̃) and

V (Cφ(X )) = H(λ̃) definitions.
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Figure 4: Quantitative evaluation of the considered scores/trigger pairs. The plot
on the left reports the produced ROC curves while the plots on the right report
the computed accuracies. White dotted lines refer to the V (Cφ(X )) = H(σ̃)

definition while black dotted lines refer to the V (Cφ(X )) = H(λ̃) definition.

I The computation of the eigenvalues reveals to be necessary with a
final AUC of 0.79, a net improvement over the direct use of the
per-component variances, characterized by an AUC of 0.56.
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Conclusion

I This paper presented a novel lifelong learning framework and metric
in order to manage and quantify the intra-class variability of a trained
classifier.

I The proposed work is an important step to extend the life of robots,
thus enabling them to operate longer in real uncontrolled
environments.

I For future work, we intend to fully implement the introduced
framework and test the full framework’s real-world performance on a
robot platform.
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