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Robotic grasping 
typically focuses 
on achieving a 
stable grasp for 
object 
transportation 
(e.g., bin picking)

Image source: https://www.aidanscannell.com/project/amazon-picking-challenge/

https://www.aidanscannell.com/project/amazon-picking-challenge/


But grasping is 
more than just 
lifting an object

Objects should 
be manipulated 
and used for their 
intended purpose

Image source: https://www.theverge.com/2015/6/12/8768871/darpa-robotics-challenge-2015-winners

https://www.theverge.com/2015/6/12/8768871/darpa-robotics-challenge-2015-winners
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Semantic or 
task-oriented 
grasping means 
to grasp objects 
that enable 
task-related 
manipulation 
actions

For example, 
grasp the handle 
of the drill to 
enable the task of 
drilling



Humans hold the 
key for semantic 
knowledge, 
therefore, 
learning from 
humans is a 
practical solution

M. Hirschmanner, C. Tsiourti, T. Patten and M. Vincze, “Virtual reality teleoperation of a humanoid using markerless human upper body pose imitation,” IEEE-RAS Humanoids, 2019, pp. 259–2650



Our Contributions
● A framework for imitating task-oriented grasps demonstrated by humans

○ Vision-based: requires no special instrumentation [1], manual annotation [2], physical 
interaction [3] or offline learning process [4]

● A neural network architecture to regress grasp parameterisation of a 
low-DoF (parallel-jaw) robotic gripper from human hand configuration

● Evaluation of grasp regression network and experiments of real-world 
task-oriented grasping with mobile manipulator

[1] J. Aleotti and S. Caselli, “Part-based robot grasp planning from human demonstration,” IEEE ICRA, 2011, pp. 4554–4560
[2] M. Hjelm, C. H. Ek, R. Detry, and D. Kragic, “Learning human priors for task-constrained grasping,” ICVS, 2015, pp. 207–217
[3] S. H. Kasaei, N. Shafii, L. S. Lopes, and A. M. Tomé, “Interactive open-ended object, affordance and grasp learning for robotic manipulation,” IEEE ICRA, 2019, pp. 3747–3753
[4] D. Antotsiou, G. Garcia-Hernando, and T.-K. Kim, “Task-oriented hand motion retargeting for dexterous manipulation imitation,” ECCV Workshops, 2018
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● Mapping from human hand                 to robot grasp             , i.e. 
○ We model function      as a neural network

● Baseline architecture inspired by PointNet [1]
○ Each point on hand input to a multilayer

perception (MLP)
○ Feature maps transformed to global feature

with pooling operation
○ Global feature passes through another MLP
○ Output the translation            , approach angle                  and closing angle 

● Architecture exploiting known joint configuration
○ Sorted point coordinates concatenated

and passes through a single MLP
○ Same output as baseline

Robotic Grasps from Human Hand Configurations

[1] C. R. Qi, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” IEEE/CVF CVPR, 2017, pp. 77–85



Network Training
● Loss function

○ l2 loss for the normalised values of the translation and angles:
○ Account for symmetry of parallel-jaw gripper; take minimum of prediction and flipped 

version (rotated 180° around closing angle):

● Data from the HO3D dataset [1]
○ Sequences of people manipulating 

object in right hand
○ Objects from the YCB dataset [2]
○ Object pose and hand joints accurately annotated
○ Corresponding grasps were hand annotated

for this work
○ Local and global augmentation applied

[1] S. Hampali, M. Oberweger, M. Rad, and V. Lepetit, “HOnnotate: A method for 3D annotation of hand and object poses,” IEEE/CVF CVPR, 2020, pp. 3196–3206
[2] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Yale-CMU-Berkeley dataset for robotic manipulation research,” IJRR, 36(3), 2017, pp. 261–268
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Offline Robot Grasp Pose Estimation

...

Object pose [1] estimated in 
each frame until it is 
observed to move
(i.e., grasped and lifted)

This frame (           ) used to 
estimate the hand pose [2] 
w.r.t. the object pose

Hand pose used to estimate 
the robot gripper pose with 
regression network

[1] K. Park, T. Patten, and M. Vincze, “Pix2Pose: Pixel-wise coordinate regression of objects for 6D pose estimation,” IEEE ICCV, 2019, pp. 7668–7677
[2] P. Panteleris, I. Oikonomidis, and A. Argyros, “Using a single RGB frame for real time 3D hand pose estimation in the wild,” IEEE WACV, 2018, pp. 436–445

Object 
pose 

estimator

Object 
pose 
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Hand
pose 
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Online Robot Grasp Execution

Object pose [1] estimated in 
current scene

Then, transform 
demonstrated grasp to new 
scene and execute

[1] K. Park, T. Patten, and M. Vincze, “Pix2Pose: Pixel-wise coordinate regression of objects for 6D pose estimation,” IEEE ICCV, 2019, pp. 7668–7677
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Experiments: Grasp Estimation Analysis
● Data from six subjects in HO3D (ABF, BB, GPMF, GSF, MDF and ShSu)

● Trained on five subjects and tested on the sixth not seen during training

● Results averaged for the six subjects

● Metric is the ADD score [1]: average distance between all vertices of a 3D 
mesh when transformed by the prediction compared to ground truth

[1] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab, “Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered 
scenes,” ACCV, 2013, pp. 548–562



Experiments: Grasp Estimation Analysis
● Best performance when joints 

concatenated into high-dim. input 
and processed by one MLP

● Data augmentation provides 
performance boost

● Removing pooling in baseline leads 
to improvement

● Splitting the heads for translation and 
rotation does not improve accuracy



Experiments: Grasp Estimation Analysis

● Removing a single group of joints can increase accuracy

● Performance is good when using only DIPs or PIPs

● Including the wrist generally leads to improvement

TIPs

DIPs

PIPs

MCPs

W

Image source: https://github.com/shreyashampali/ho3d

https://github.com/shreyashampali/ho3d


Experiments: Grasp Estimation Analysis
● Hand pose estimated using tracking 

from [1]

● Grasp error is correlated to hand pose 
error

[1] P. Panteleris, I. Oikonomidis, and A. Argyros, “Using a single RGB frame for real time 3D hand pose estimation in the wild,” IEEE WACV, 2018, pp. 436–445



Experiments: Real-world Grasp Imitation
● Demonstration of full pipeline with 

YCB objects

● Robot successfully grasps object 
in new pose after observing one 
demonstration

● Quantitative results show good 
success rate for different objects

○ except for the mug, which is difficult 
to grasp due to thin handle



Experiments: Real-world Grasp Imitation
● Demonstration of full pipeline with 

YCB objects

● Robot successfully grasps object 
in new pose after observing one 
demonstration

● Quantitative results show good 
success rate for different objects

○ except for the mug, which is difficult 
to grasp due to thin handle

● Task-oriented grasps for objects 
with handles
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