Imitating Task-oriented Grasps from Human Demonstrations with a Low-DoF Gripper

Timothy Patten and Markus Vincze

Vision for Robotics Automation and Control Institute TU Wien, Vienna, Austria

Contact: patten@acin.tuwien.ac.at

Dr. Timothy Patten received his PhD from the Australian Centre for Field Robotics at the University of Sydney, Australia. He is now a postdoctoral researcher with the Vision for Robotics laboratory at the Technical University of Vienna (TU Wien), Austria.

He has been involved in a number of research and industry sponsored projects in which he worked on object segmentation, recognition, grasping and task planning. Currently, he is the principle investigator at TU Wien in the CHIST-ERA project InDex, for which he is developing methods for object tracking and semantic grasping.

Robotic grasping typically focuses on achieving a stable grasp for object transportation (e.g., bin picking) But grasping is more than just lifting an object

Objects should be manipulated and used for their intended purpose

Image source: https://www.theverge.com/2015/6/12/8768871/darpa-robotics-challenge-2015-winners

Semantic or task-oriented grasping means to grasp objects that enable task-related manipulation actions

Semantic or task-oriented grasping means to grasp objects that enable task-related manipulation actions

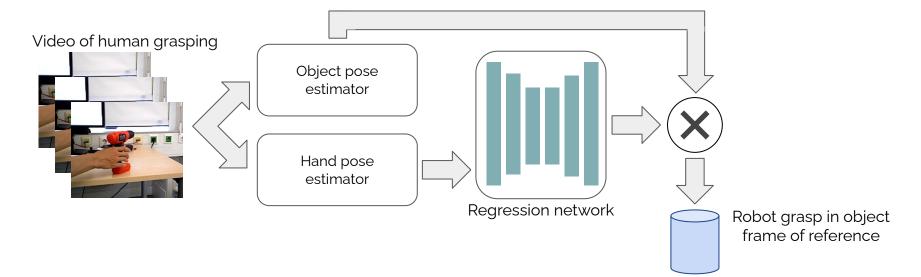
For example, grasp the handle of the drill to enable the task of drilling Humans hold the key for semantic knowledge, therefore, learning from humans is a practical solution

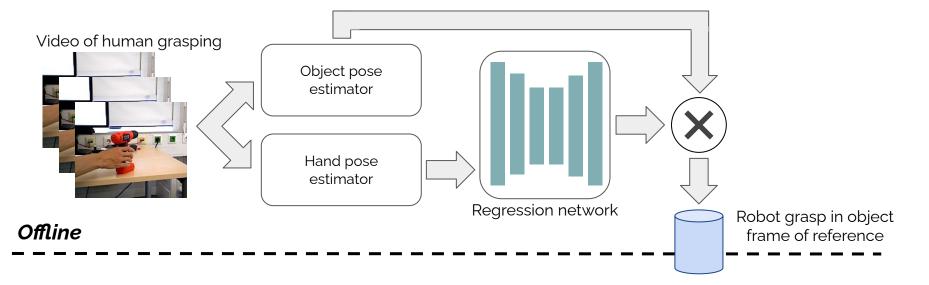
M. Hirschmanner, C. Tsiourti, T. Patten and M. Vincze, "Virtual reality teleoperation of a humanoid using markerless human upper body pose imitation," IEEE-RAS Humanoids, 2019, pp. 259-2650

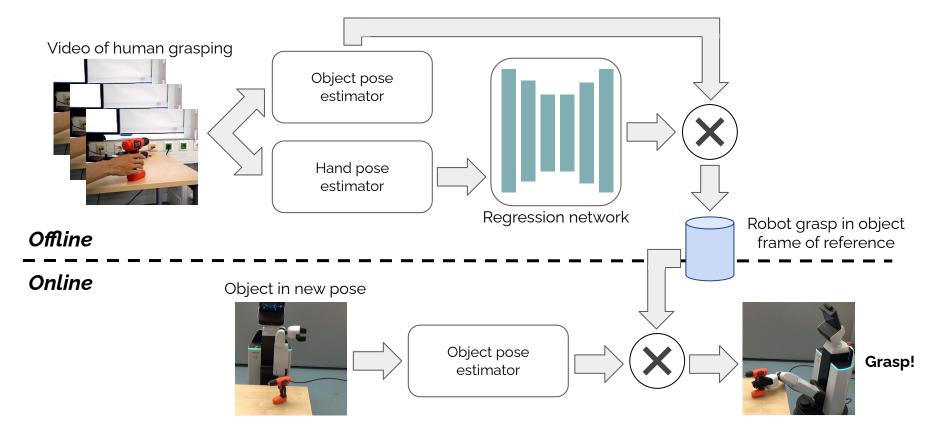
Our Contributions

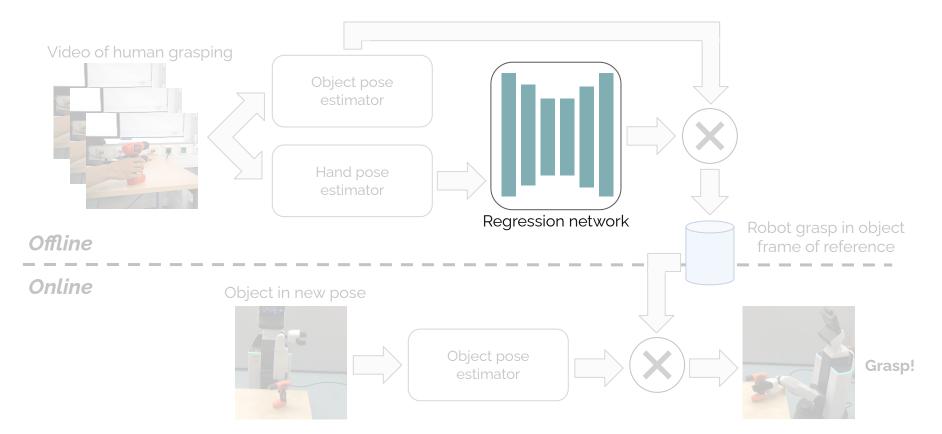
- A framework for imitating task-oriented grasps demonstrated by humans
 - Vision-based: requires no special instrumentation [1], manual annotation [2], physical interaction [3] or offline learning process [4]
- A neural network architecture to regress grasp parameterisation of a low-DoF (parallel-jaw) robotic gripper from human hand configuration
- Evaluation of grasp regression network and experiments of real-world task-oriented grasping with mobile manipulator

J. Aleotti and S. Caselli, "Part-based robot grasp planning from human demonstration," IEEE ICRA, 2011, pp. 4554–4560
M. Hjelm, C. H. Ek, R. Detry, and D. Kragic, "Learning human priors for task-constrained grasping," ICVS, 2015, pp. 207–217
S. H. Kasaei, N. Shafii, L. S. Lopes, and A. M. Tomé, "Interactive open-ended object, affordance and grasp learning for robotic manipulation," IEEE ICRA, 2019, pp. 3747–3753
D. Antotsiou, G. Garcia-Hernando, and T.-K. Kim, "Task-oriented hand motion retargeting for dexterous manipulation imitation," ECCV Workshops, 2018



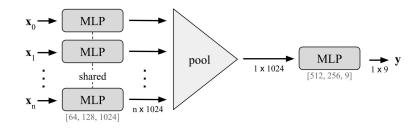






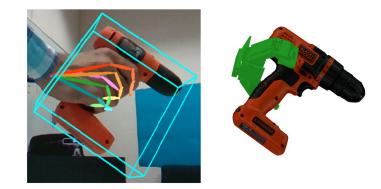
Robotic Grasps from Human Hand Configurations

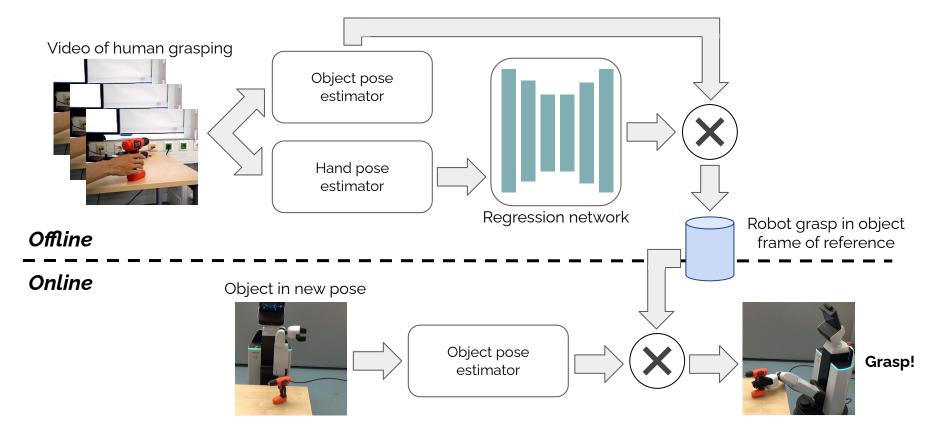
- Mapping from human hand $\mathbf{H} \in \mathbb{R}^{H}$ to robot grasp $\mathbf{G} \in \mathbb{R}^{G}$, i.e. $\mathbf{G} = \mathcal{F}(\mathbf{H})$
 - \circ We model function ${\mathcal F}$ as a neural network
- Baseline architecture inspired by PointNet [1]
 - Each point on hand input to a multilayer perception (MLP)
 - Feature maps transformed to global feature with pooling operation
 - Global feature passes through another MLP
 - Output the translation (x, y, z), approach angle (a_x, a_y, a_z) and closing angle (c_x, c_y, c_z)
- Architecture exploiting known joint configuration
 - Sorted point coordinates concatenated and passes through a single MLP
 - Same output as baseline



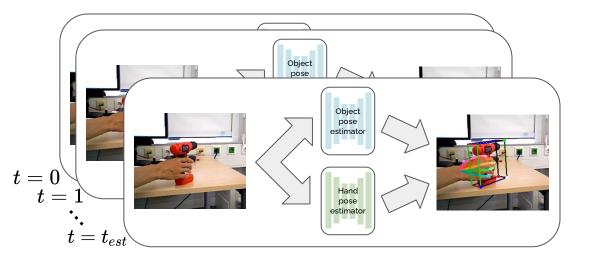
Network Training

- Loss function
 - *l2* loss for the normalised values of the translation and angles: $\mathcal{L}(\mathbf{y}^{GT}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i}^{GT} \mathbf{y}_{i})^{2}$
 - Account for symmetry of parallel-jaw gripper; take minimum of prediction and flipped version (rotated 180° around closing angle): $\mathcal{L}_{sym}(\mathbf{y}^{GT}, \mathbf{y}) = \min(\mathcal{L}(\mathbf{y}^{GT}, \mathbf{y}), \mathcal{L}(\mathbf{y}^{GT}, \mathbf{y}^{flipped}))$
- Data from the HO3D dataset [1]
 - Sequences of people manipulating object in right hand
 - Objects from the YCB dataset [2]
 - Object pose and hand joints accurately annotated
 - Corresponding grasps were hand annotated for this work
 - Local and global augmentation applied





Offline Robot Grasp Pose Estimation



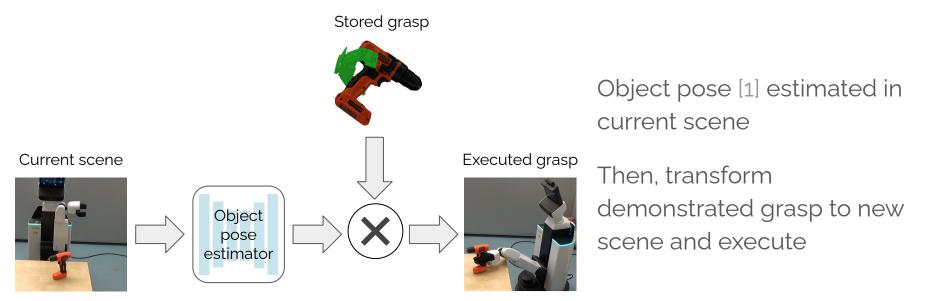
Object pose [1] estimated in each frame until it is observed to move (i.e., grasped and lifted)

This frame ($t = t_{est}$) used to estimate the hand pose [2] w.r.t. the object pose

Hand pose used to estimate the robot gripper pose with regression network

[1] K. Park, T. Patten, and M. Vincze, "Pix2Pose: Pixel-wise coordinate regression of objects for 6D pose estimation," IEEE ICCV, 2019, pp. 7668–7677 [2] P. Panteleris, I. Oikonomidis, and A. Argyros, "Using a single RGB frame for real time 3D hand pose estimation in the wild," IEEE WACV, 2018, pp. 436–445

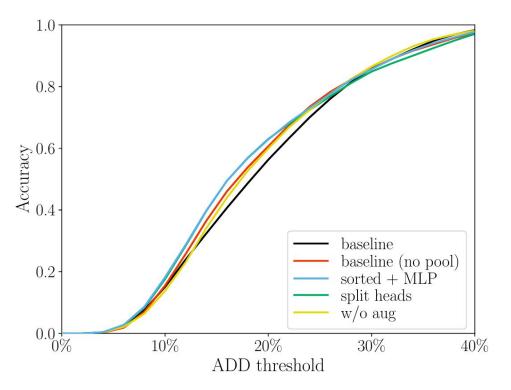
Online Robot Grasp Execution

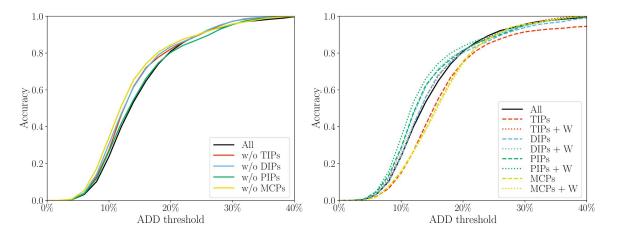


- Data from six subjects in HO3D (ABF, BB, GPMF, GSF, MDF and ShSu)
- Trained on five subjects and tested on the sixth not seen during training
- Results averaged for the six subjects
- Metric is the ADD score [1]: average distance between all vertices of a 3D mesh when transformed by the prediction compared to ground truth

[1] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab, "Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes," ACCV, 2013, pp. 548–562

- Best performance when joints concatenated into high-dim. input and processed by one MLP
- Data augmentation provides performance boost
- Removing pooling in baseline leads to improvement
- Splitting the heads for translation and rotation does not improve accuracy





- Removing a single group of joints can increase accuracy
- Performance is good when using only DIPs or PIPs
- Including the wrist generally leads to improvement

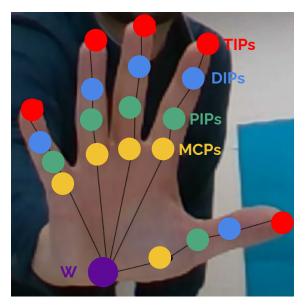
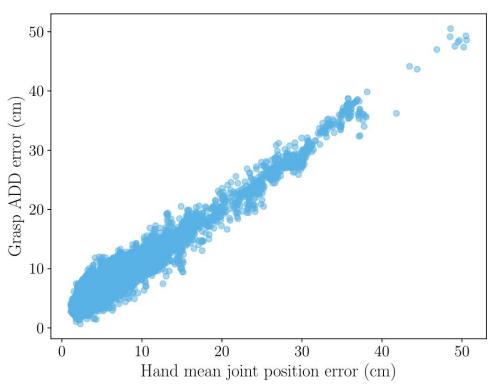


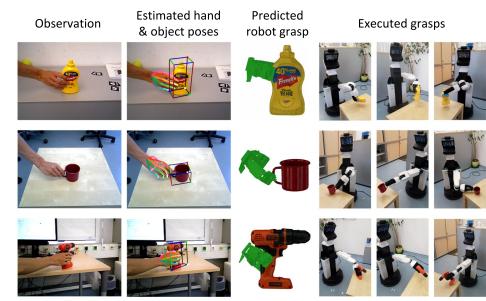
Image source: https://github.com/shreyashampali/ho3d

- Hand pose estimated using tracking from [1]
- Grasp error is correlated to hand pose error



Experiments: Real-world Grasp Imitation

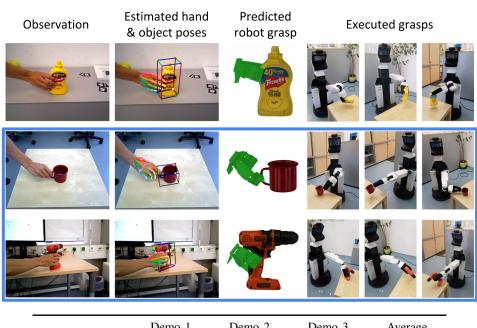
- Demonstration of full pipeline with YCB objects
- Robot successfully grasps object in new pose after observing one demonstration
- Quantitative results show good success rate for different objects
 - except for the mug, which is difficult to grasp due to thin handle



	Demo 1	Demo 2	Demo 3	Average
sugar_box	0.6	0.8	0.8	0.73
tomato_soup_can	0.8	0.8	1.0	0.87
mustard_bottle	1.0	0.8	1.0	0.93
mug	1.0	0.4	0.2	0.53
power_drill	0.6	1.0	0.8	0.80

Experiments: Real-world Grasp Imitation

- Demonstration of full pipeline with YCB objects
- Robot successfully grasps object in new pose after observing one demonstration
- Quantitative results show good success rate for different objects
 - except for the mug, which is difficult to grasp due to thin handle
- Task-oriented grasps for objects with handles



	Demo 1	Demo 2	Demo 3	Average
sugar_box tomato_soup_can mustard_bottle	0.6	0.8	0.8	0.73
	0.8	0.8	1.0	0.87
	1.0	0.8	1.0	0.93
mug power_drill	1.0	0.4	0.2	0.53
	0.6	1.0	0.8	0.80

Thank you

The research leading to these results has received funding from the Austrian Science Fund (FWF) under grant agreement No. 13969-N30 (InDex)

