

Projection-Based Inter-Agent Collision Avoidance in Dual Agent Systems*

Vinod P. Gehlot and Mark J. Balas

Texas A&M University, College Station, Texas 77843, USA

Saptarshi Bandyopadhyay, Marco B. Quadrelli, and David S. Bayard

Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California 91125, USA

TEXAS A&M ENGINEERING EXPERIMENT STATION

Authors:

Vinod P. Gehlot*

TEES Assistant Research Engineer Mechanical Engineering Department Texas A&M University, College Station

Mark J. Balas

Professor of Dynamical Systems Mechanical Engineering Department Texas A&M University, College Station

Marco B. Quadrelli

Principal Member of Technical Staff Group Supervisor, Robotics Modelling and Simulation Group NASA Jet Propulsion Laboratory California Institute of Technology

David S. Bayard

Senior Research Scientist, Group Supervisor, Guidance & Control Section NASA Jet Propulsion Laboratory California Institute of Technology

Saptarshi Bandyopadhyay

Robotics Technologist NASA Jet Propulsion Laboratory, California Institute of Technology

*Presenter

For more information on the authors, click on their names.

exponentially stable.

٠

Introduction: Transient Stability in Leader Follower Systems

• <u>Relative error feedback</u> is a common approach in designing autonomous leader-follower systems that maintain some fixed separation vector.

• Unfortunately, <u>even though the relative error dynamics are exponentially stable</u>, <u>collisions</u> between the leader and follower <u>can still occur due to transient dynamics</u> resulting from off-nominal initial conditions and external disturbances.

Projection Based Approach to Transient Stability in Leader-Follower Systems

- Projection operator based approach to transient stability consists of <u>three</u> <u>components</u>:
 - <u>Baseline controller</u>: relative error feedback for formation maintenance.
 - <u>Projection based estimator</u>: generates collision free estimator trajectory by estimating the relative error vector.
 - <u>Estimator tracking controller</u>: a servomechanism for the relative error vector to track the collision free relative error trajectory generated by the projection based estimator.
- Together, the three controller components provide transient stability, satisfying the relative error constraint

 $\parallel \xi_2(t) \parallel \leq (1\!-\!\alpha) \parallel d_2 \parallel.$

Main Results: Collision free Estimator and Tracking controller Stability.

• **Theorem** (Collision Free Estimator Stability): The error trajectory

$$e(t) \equiv \hat{\xi}_2 - \xi_2,$$

of the estimator dynamics

$$\dot{\hat{\xi}}_2 = \Gamma^{-1} \mathbf{Proj}(\hat{\xi}_2, \Gamma h(\hat{\xi}_2, y_2, u_{a2}))$$
$$\hat{y}_2 = C\hat{\xi}_2,$$

is exponentially stable.

Collision Free Trajectory Estimator

$$\begin{array}{c}
y_2 \\
\hat{\xi}_2 = \Gamma^{-1} \mathbf{Proj}(\hat{\xi}_2, \Gamma h(\hat{\xi}_2, y_2, u_{a_2})) \\
\hat{y}_2 = C\hat{\xi}_2
\end{array}$$

• **Theorem** (Reference Model Tracking): The follower LTI system $\dot{x}_2 = Ax_2 + Bu_2$ $y_2 = C(x_1 - x_2 - d_2) = C\xi_2$ with the tracking control law $u_{a_2} = G_e(y_2 - \hat{y}_2) + S_2 \hat{y}_2$, will track the estimated trajectory system $\hat{\xi}_2(t) = L\phi(t)$ $\hat{y}_2 = C\hat{\xi}_2(t)$, such that, the tracking error trajectory is exponentially stable.

Simulation Result: Baseline Controller with Projection Based Tracking Disabled

• In this simulation, the <u>leader and the follower are double integrator systems</u>, and the follower maintains a distance of 10 meters with respect to the leader. Here, <u>both the baseline controller and the projection</u> <u>based estimator are enabled</u>, <u>but the tracking controller is disabled</u>.

Simulation Result: Baseline Controller with Projection Based Tracking Enabled

• In this simulation, the <u>leader and the follower are double integrator systems</u>, and the follower maintains a distance of 10 meters with respect to the leader. Here, the follower is equipped with the <u>baseline</u> <u>controller</u>, the projection based estimator, and the tracking controller.

Conclusion:

- The novel control architecture addresses the issue of transient stability in leaderfollower dual agent systems, and the results presented are preliminary.
- The following technical challenges, relating to transient stability, will be addressed in the sequel to this work:
 - The combined stability of the projection estimator and the tracking controller error vector,
 - Generalize the control architecture to general N-dimensional multi-agent systems,
 - Control and stability results in the presence of external disturbance and noise.

Thank you!

Paper Title : "Projection-Based Inter-Agent Collision Avoidance in Dual Agent Systems."

Corresponding Author: Vinod P. Gehlot (e-mail: vinodgehlot@tamu.com)

Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. ©2020 California Institute of Technology. Government sponsorship acknowledged.