

Online, Virtual Sep. 27 – Oct. 1, 2020 16th International Conference on Autonomic and Autonomous Systems ICAS - iaria

National Cheng Kung University Mechtronic Lab

Integration of Landmark Detection and Low-cost Sensors for Vehicle Localization in Challenging Environments

Yu-Hsiang Wang, Jyh-Ching Juang, Muhammad Rony Hidayatullah

Department of Electrical Engineering, National Cheng Kung University

ex4587@gamil.com, 8202019@gs.ncku.edu.tw, mronyh97@gmail.com

Presenter Introduction

Yu-Hsiang Wang received B. S. and M. S. degrees from National Cheng Kung University

I am a member of NCKU Car Team and focus on perception and localization technologies of self-driving.

We develop the autonomous vehicle and do proving ground validation in Taiwan Car Lab in Tainan, Taiwan.

Introduction

Introduction

> Map matching based vehicle localization

- Integrate perception information from monocular camera and associate landmarks to the corresponding location in the High Definition (HD) map to deduce vehicle location
- Landmark features on the road can be recognized by using computer vision or deep neural network
 - Prominent vision features
 - ■Long-term stability
 - ■Appear in intersections

An Overview of our System

Contribution of this Work -

Develop a map-matching based scheme via combing image and HD map to improve the localization accuracy of a low-cost system as well as its availability.

Vehicle Platform

Vision-aided Loosely Coupled Integration

The integration filter is based on an extended Kalman filter

PnP - Bundle Adjustment

Image Processing - Re-projection

Re-projection HD Map information

$$s\begin{bmatrix} u\\v\\1\end{bmatrix} = K \cdot \begin{bmatrix} \mathbf{R}_{3x3} \mid \mathbf{t}_{3x1} \end{bmatrix} \cdot \begin{bmatrix} X\\Y\\Z\\1\end{bmatrix} \text{ with } K = \begin{bmatrix} f_u & 0 & u_o\\0 & f_v & v_o\\0 & 0 & 1 \end{bmatrix}$$

Image Processing

- Detection

Deep neural network

- This model is able to detect targets precisely
 - \checkmark With fast inference time
 - ✓ With small computation
- The significant visual feature can be recognized even in the night time

Visual Measurement Model

Data association via a combination of Mahalanobis distance

$$y(\tilde{d}_t, \hat{d}_t) = \alpha \cdot \delta d_t^{iT} S_t^{-1} \delta d_t^i + (1 - \alpha) \cdot \frac{\omega_d^2}{\sigma_d^2}$$

ICAS2020

Experimental Results

Localization errors compare to the reference

	GNSS	GNSS/IMU/Odometry	Proposed method
North error [m]	4.22	4.10	1.85
East error [m]	2.65	1.99	1.32

ICAS2020

Experimental Results

• The heading angle error of the vehicle can be reduced below 5 degree

Conclusion

The map-matching based localization system is able to improve the localization accuracy and the availability of a conventional integration strategy

Future work

- There are more visual feature that should be exploited in an image such as lane line, traffic signs
- Online-calibrate camera parameters

Thanks for your attention.