The Fifth International Conference on Green Communications, Computing and Technologies GREEN 2020

ECONOMIC AND ENVIRONMENTAL BENEFITS OF ELECTRIC, HYBRID AND CONVENTIONAL VEHICLE TREATMENT IN LITHUANIA IARIA

RASA TVERSKYTE, KAMILE PETRAUSKIENE, JOLANTA DVARIONIENE, KAUNAS UNIVERSITY OF TECHNOLOGY INSTITUTE OF ENVIRONMENTAL ENGINEERING KAUNAS, LITHUANIA E-MAIL: RASA.TVERSKYTE@KTU.EDU E-MAIL: KAMILE.PETRAUSKIENE@KTU.EDU E-MAIL: JOLANTA.DVARIONIENE@KTU.LT

November 21-25, 2020, Valencia, Spain

RASA TVERSKYTE

- Master student of Environmental Engineering, program – Sustainable Management and Production.
- Areas of research and interests:
 End-of-life vehicle recycling,
 Circular economy,
 Life cycle assessment.

KAMILE PETRAUSKIENE

- PhD student of Environmental Engineering.
- Areas of research and interests: Life cycle assessment, Renewable energy, Sustainable mobility, Electric vehicles.

PRESENTERS

INTRODUCTION

Automotive recycling is playing a significant role in environmental and economic sectors as more and more End-of-Life Vehicles (ELVs) are generated worldwide. In 2019 more than every second Lithuanian resident owned a car. The use of secondary resources, promotion of ELV recycling technologies and the increasing use of recovered and recycled materials provide a promising outlook in order to gain economic and environmental advantages.

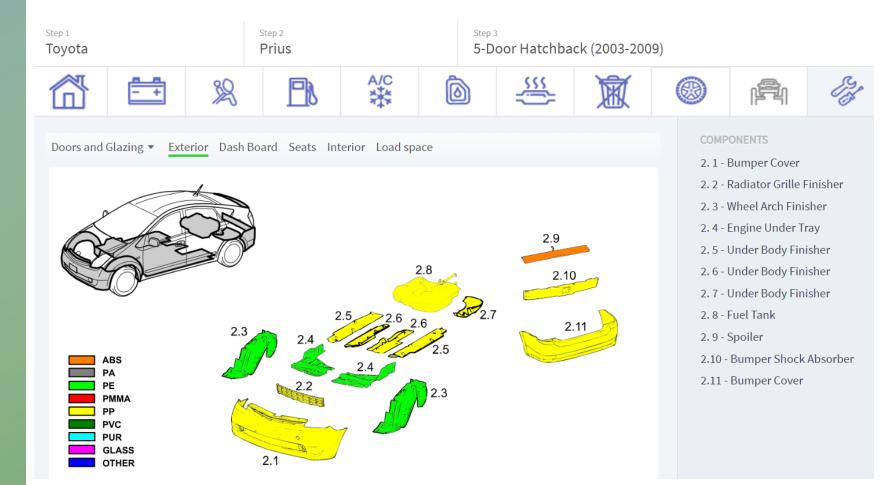
The goal of this study is to evaluate and compare the economic and environmental benefits of the treatment and bringing materials back to the market (upcycling) of a Battery Electric Vehicle (BEV), a Hybrid Electric Vehicle (HEV) and Internal Combustion Engine Vehicles (ICEVs) powered with diesel and petrol.

METHODOLOGY

INVENTORY ANALYSIS – ANALYSED VEHICLES 2005–2008 Volkswagen Golf plus with 1.4 petrol/1.9 diesel engine.

Nissan Leaf All 2011-2013 24 kWh

Toyota Prius 5 door hatchback 2003-2009 1,5 l, 16 kW



METHODOLOGY. ECONOMIC PART

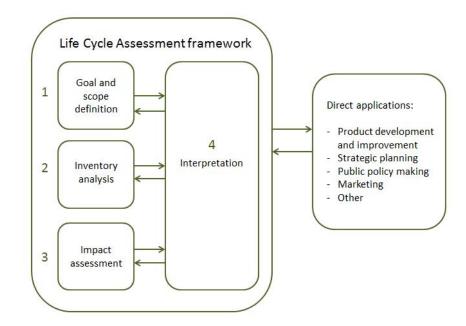
FOR VEHICLE PARTS (MATERIAL, WEIGHT AND ITS PRESENCE) ANALYSIS WAS USED INTERNATIONAL DISMANTLING INFORMATION SYSTEM (IDIS)

Five local companies were interviewed to clarify the demand of each part. The parts were separated into three categories – high, low and average demand on the market.

Price calculation methodology: for high demand category parts was taken full price from the market, for average demand category parts was calculated half-price and for low (almost none) demand parts was calculated the price for this kind of waste treatment.

METHODOLOGY. ECONOMIC PART

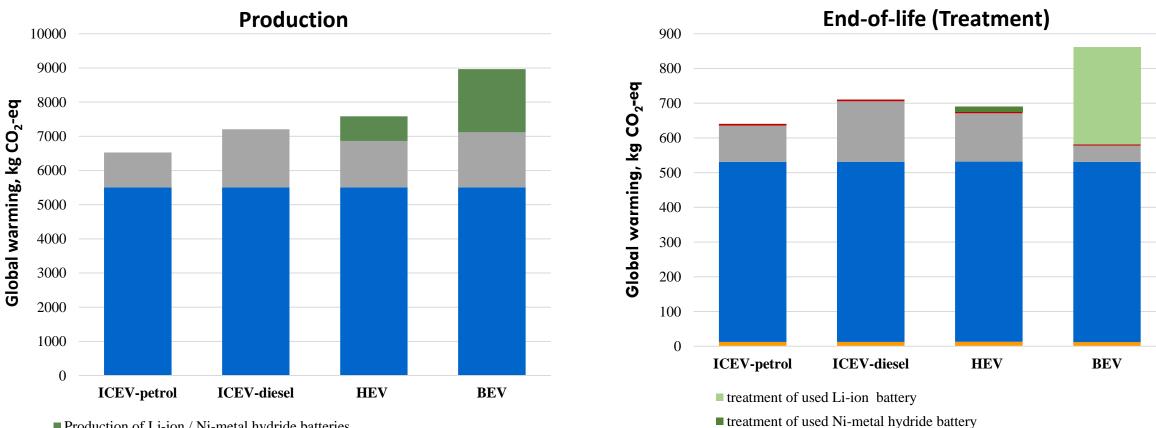
RESULTS.	
ECONOMIC	
P A R T	


Lizh	Part demand on the m	
High	Medium	Low/none
Spoiler	Fenders	Seats and headrests
Grille	Front hood	Seatbelts
Wheel niche	Door	Inside thresholds
Bumper	Door window regulator	Back hood
body underlay trim	Engine	Windshield washer assembly
Engine pad	Turbocharger	Hydroisolation
Clutch disk	Fuel injection system	Fan clutch
Air conditioner compressor	Fuel pump	Starter motor
Wheels (set)	Pressure plate	Axle shaft
Catalyzer (Al)	Torque convertor	Entertainment display
Battery	Alternator	Air bags
Tires	Radiator (Al)	Brake liquid
Front Glass	Mirrors	Cooling liquid
Side, back, rooftop glass	Front lamps	Shock absorber oil
Carpet	Navigation system	Engine oil
		Engine oil filter
		Gear oil
		Back lamps
		Washing liquid
		Brake pads
		Fuel tank
		Car Hulk (to scrap metal)

RESULTS OF ECONOMIC BENEFIT FOR VEHICLE DISMANTLERS AND CONSUMERS

Passenger car	The share of passenger cars mass that can be sold as parts for reuse after dismantling, %	Economic benefit for dismantlers, Eur	Price of new parts, Eur	Economic benefit for consumers, Eur
Volkswagen Golf (ICEV-petrol)	27	2,412	12,540	10,128
Volkswagen Golf (ICEV-diesel)	25	2,644	16,560	13,916
Nissan Leaf (BEV)	35	8,812	15,427	6,615
Toyota Prius (HEV)	42	3,835	20,989	17,154

- Lice Cycle Assessment (LCA) methodology was used;
- The goal of this LCA study is to evaluate the environmental impacts throughout the electric, hybrid and conventional vehicles' production and end-of-life stages;
- The ReCiPe method at the midpoint level was used to perform the impact assessment of global warming indicator;
- Database Ecoinvent 3.5;
- SimaPro 9.1. software.


(Source: ISO 14040 and 14044:2006, 2006)

METHODOLOGY. ENVIRONMENTAL PART

The LCA results in terms of global warming of analysed vehicles' production and treatment stages

Production of Li-ion / Ni-metal hydride batteries
 Production of internal combustion engine / powertrain

Production of glider

- e deadhent of used Ni-metal flydride balle
- treatment of scrap lead acid battery
- treatment of used internal combustion engine/ powertrain
- treatment of used glider
- manual dismantling of passenger car

	ICEV-petrol		ICEV-diesel		HEV		BEV	
Vehicle parts	Production, kg CO ₂ -eq	Treatment, kg CO ₂ -eq	Production, kg CO ₂ -eq	Treatment, kg CO ₂ -eq	Production, kg CO ₂ -eq	Treatment, kg CO ₂ -eq	Production, kg CO ₂ -eq	Treatment, kg CO₂-eq
Glider	5,507	519	5,507	519	5,507	519	5,507	519
Internal combustion engine/ powertrain	1,018	105	1,697	174	1,358	139	1,610	47
Batteries	n/a	5	n/a	5	719	20	1,851	284
Total	6,525	629	7,204	698	7,584	678	8,968	850

RESULTS OF GLOBAL WARMING ASSESSMENT DURING VEHICLE PRODUCTION AND TREATMENT STAGES

RESULTS OF GLOBAL WARMING ASSESSMENT DURING VEHICLE PRODUCTION

Contribution	Process		
✓ 100.00%	P market for glider, passenger car glider, passenger car APOS, U - GLO	Clider production	
✓ 100.00%	P glider production, passenger car glider, passenger car APOS, U - GLO	Glider production	
> 28.47%	P market for reinforcing steel reinforcing steel APOS, U - GLO		
> 23.01%	P market group for electricity, medium voltage electricity, medium voltage APOS, U - GLO	Contribution, %	Materials
> 08.34%	P market for used glider, passenger car used glider, passenger car APOS, U - GLO	,	
> 08.27%	P market for printed wiring board, mounted mainboard, desktop computer, Pb free printed wiring board, moun	28.47	reinforcing st
> 05.18%	P market for steel, low-alloyed, hot rolled steel, low-alloyed, hot rolled APOS, U - GLO		-
> 04.25%	P market for sheet rolling, steel sheet rolling, steel APOS, U - GLO	5.18	steel
> 02.81%	P market for polyurethane, flexible foam polyurethane, flexible foam APOS, U - GLO	_	
> 02.35%	P market for synthetic rubber synthetic rubber APOS, U - GLO	2	chromium ste
> 01.95%	P market for polypropylene, granulate polypropylene, granulate APOS, U - GLO	4	
> 01.93%	P market for steel, chromium steel 18/8, hot rolled steel, chromium steel 18/8, hot rolled APOS, U - GLO	1	copper
> 01.73%	P market for coating powder coating powder APOS, U - GLO	20.05	Tabal
> 01.48%	P market for epoxy resin, liquid epoxy resin, liquid APOS, U - GLO	36.65	Total
> 01.33%	P market group for heat, district or industrial, natural gas heat, district or industrial, natural gas APOS, U - GLO		
> 01.23%	P market for viscose fibre viscose fibre APOS, U - GLO		
> 01.11%	P market for road vehicle factory road vehicle factory APOS, U - GLO		
> 00.99%	P market for copper APOS, U - GLO		
> 00.70%	P market for magnesium APOS, U - GLO		
> 00.62%	P market for polyethylene, low density, granulate polyethylene, low density, granulate APOS, U - GLO		
> 00.60%	P market for flat glass, uncoated flat glass, uncoated APOS, U - GLO		
> 00.60%	P market for light emitting diode light emitting diode APOS, U - GLO		
> 00.52%	P market for nylon 6 APOS, U - GLO		
> 00.41%	P market for aluminium, cast alloy aluminium, cast alloy APOS, U - GLO		
> 00.38%	P market for acrylonitrile-butadiene-styrene copolymer acrylonitrile-butadiene-styrene copolymer APOS, U		
> 00.37%	P market for aluminium, wrought alloy aluminium, wrought alloy APOS, U - GLO		
> 00.36%	P market for polyvinylchloride, suspension polymerised polyvinylchloride, suspension polymerised APOS, U - G		
> 00.22%	P market for waste plastic, industrial electronics waste plastic, industrial electronics APOS, U - GLO		
> 00.12%	P market for zinc ZPOS, U - GLO		
> 00.11%	P market group for heat, district or industrial, other than natural gas heat, district or industrial, other than natura		
> 00.11%	P market for lead lead APOS, U - GLO		
> 00.10%	P market for tempering, flat glass tempering, flat glass APOS, U - GLO		
> 00.09%	P market for polyethylene terephthalate, granulate, amorphous polyethylene terephthalate, granulate, amorpho		
> 00.08%	P market for lubricating oil lubricating oil APOS, U - GLO		
> 00.06%	P market for sheet rolling, aluminium sheet rolling, aluminium APOS, U - GLO		
> 00.05%	P market for wire drawing, copper wire drawing, copper APOS, U - GLO		
> 00.03%	P market for glass fibre reinforced plastic, polyester resin, hand lay-up glass fibre reinforced plastic, polyester r		
> 00.03%	P market group for tap water tap water APOS, U - GLO		
> 00.01%	P market for aluminium scrap, new aluminium scrap, new APOS, U - RoW		

¥

CONCLUSION

- The results showed the economic benefits for dismantling companies and passenger car owners/consumers. Around 42% of ELV-hybrid car mass can be sold in parts that would save up to 3,835 Eur as an economic benefit for the dismantlers and 17,153 Eur for the consumers. Besides, 35% of ELV-electric car mass can be sold in parts for reuse and it can bring 8,812 Eur for the dismantling company, while the consumers would save up to 6,614 Eur when buying used parts for their car repair. Next, an ELV-petrol car and ELV-diesel car can be sold in parts 27% and 25%, respectively. An ELV-petrol car can bring 2,412 Eur economic benefit for the dismantlers and 10,127 Eur for the consumers, while an ELV-diesel car can bring 2,644 Eur economic benefit for the dismantlers and 13,915 Eur for the consumers.
- When performing the LCA analysis, the lack of the data of separate automotive materials were occurred. Only three options of the automotive parts (glider, internal combustion engine/powertrain and batteries) could be chosen.
- The results of LCA showed that the end-of-life stage (treatment) of the glider, the internal combustion engine/powertrain, Li-ion (from BEV) and Ni-metal (from HEV) batteries account for only 10% of the environmental impact of the production of all these car parts.
- The LCA results in terms of global warming showed that treatment of ELV parts can save CO₂ emissions caused by metal extraction needed for the production of the analysed vehicle parts. As a result, secondary resource recovery can save 23–44% CO₂-eq needed for the primary metal extraction.

THANK YOU FOR YOUR ATTENTION!

COMMENTS AND SUGGESTIONS ARE WELCOME!

Contact:

rasa.tverskyte@ktu.edu kamile.petrauskiene@ktu.edu jolanta.dvarioniene@ktu.lt