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Hawai’i Island Chain

Isolated Geographic Location

Hawai’i and other US Islands
have been noted by the media as
COVID-19 hotspots in August
after a relatively calm period of
low case rates. U.S. Surgeon
General Jerome Adams came in
person on August 25 to Oahu to
address the alarming situation.

Primary Goal of Our Work

To capture peculiarity of the situation in
Hawai’i and provide detailed modeling of
current virus spread patterns aligned
with dates of lockdown and similar
measures. We use this analysis to
formulate scenario outcomes moving
forward.



Isolated: Good or Bad?

Hawai’i finds itself in a unique position due to its extremely isolated
geographic location, mostly linear population distribution along the
coast, and a heavy dependence on the tourism and hospitality
sectors of the economy.

I While the first two factors appeared advantageous in the fight
against the disease, the latter one creates a tempering e↵ect on
feasible long-term mitigation e↵orts, since too stringent an
approach may lead to a catastrophic impact on the economy.

I We study the unique aspects of Hawai’i from both a social and
data-driven modeling perspective to understand and recommend
the critical intervention measures that make the most impact on
spread of the disease while mitigating societal adversities.



Course of COVID-19 in Hawai’i

Hawai’i crushing COVID-19

The March stay-at-home order brought applause when the epidemic was
stomped flat but as a result Hawai’i remained extremely vulnerable to the
disease exemplified by the following alarming situation in which the islands
saw a very significant second wave of infections.

COVID-19 crushing Hawai’i

The state’s seven day average case rate per 100,000 of populations went
from months at the bottom of the US list to holding a clear spot in the top
15 as of the ending days of August 2020a

a
Covid in the U.S.: Latest Map and Case Count - The New York Times



Epidemiological Models

Compartmentalized SEIR models of the COVID-19 provide the basis
for much of the current epidemiological modeling e↵orts world-wide,
however variants in the compartmental choices and corresponding
variables allow for parameter matching and optimizations, thus
providing useful predictive information specific to our Island
population

What can they do?

Making a good model for a pandemic is di�cult, but it is even harder to use
it properly. There is no reliable data on how the coronavirus spreads, and
people turn out to be really, really complicated!a

I Understand the past

I ”What-If” scenarios!

I Who should received vaccine first?

a
Maggie Koerth, Coronavirus Models Were Always About More Than

Flattening The Curve



SEIR

To model the spread of COVID-19, we employ a compartmentalized modela,
which is based on a standard discrete SEIR model. As in the standard SEIR
model, we partition a given population into four compartments:
Susceptible (not currently infected), Exposed (infected with no
symptoms), Infected (infected with symptoms), Removed (recovered or
deceased).

a
Curtailing transmission of severe acute respiratory syndrome within a

community and its hospital, Lloyd-Smith & al.

I � transmission rate

I p probability to develop symptoms

I r recovery rate



GSEIR - Generalized SEIR Model

To better capture the dynamics of the infection, we divide the whole
population into two population groups: the general community and
healthcare workers (healthcare workers play a vital role and are
exposed in di↵erent ways than the general community.

In addition, compartments Exposed and Infected (in each population
group) are split into multiple stages to better reflect the progression
of the disease. The dynamics of each population group have two
distinguished parts: the dynamics of Susceptible individuals, and the
dynamics of the rest of the compartments. The former is governed by
the hazard rate.



Variables

Variable S(t). The number of susceptible individuals.
Variables Ei (t). The number of asymptomatic infected individuals i
days after exposure who are not quarantined.
Variables Eq,i (t). The number of quarantined asymptomatic
infected individuals i days after exposure.
Variables Ij(t), i = 0, 1. The number of symptomatic infected
individuals i days after the onset of symptoms who are not
quarantined.
Variables Ij(t), j = 3, 4, 5. The number of symptomatic infected
individuals at the nominal stage i of the illness. Note that a person
can stay at a given stage for several days.
Variables Iq,j(t), j = 0, 1. The number of quarantined symptomatic
infected individuals, with j representing either the number of days
after the onset of the symptoms (j = 0, 1), or the stage of the illness
(j = 2, 3, 4).
Variable R(t). The number of removed (recovered or deceased)
individuals.



GSEIR Diagram



Dynamics Equations
The equations for the dynamics of the two population groups are
essentially the same. Only the hazard rate and the parameters
determining transition rates into quarantine may be di↵erent between
the two groups.

S(t + 1) = e
��(t)

S(t)

E0(t + 1) = (1� e
��(t))S(t)

Ei (t + 1) = (1� pi�1)(1� qa,i�1)Ei�1(t),

i = 1, . . . , 13

Eq,i (t + 1) = (1� pi�1)(qa,i�1Ei�1(t)+

+ Eq,i�1(t)), i = 1, . . . , 13

I0(t + 1) =
13X

i=0

pi (1� qa,i )Ei (t)

I1(t + 1) = (1� qs,0)I0(t)

I2(t + 1) = (1� qs,1)I1(t) + (1� r)(1� qs,2)I2(t)



Dynamics Equations-Continued

Ij(t + 1) = r(1� qs,j�1)Ij�1(t)+

+ (1� r)(1� qs,j)Ij(t), j = 3, 4

Iq,0(t + 1) =
13X

i=0

pi (qa,iEi (t) + Eq,i (t))

Iq,1(t + 1) = Iq,0(t) + qs,0I0(t)

Iq,2(t + 1) = Iq,1(t) + qs,1I1(t)+

+ (1� r)(qs,2I2(t) + Iq,2(t))

Iq,j(t + 1) = r(qs,j�1Ij�1(t) + Iq,j�1(t))+

+ (1� r)(qs,j Ij(t) + Iq,j(t)), j = 3, 4

R(t + 1) = R(t) + rI4(t) + rIq,4(t)+

+ (1� p13)E13(t) + (1� p13)Eq,13(t)



Hazard Rate and Mixing Pool
The hazard rate, �(t), depends on time and essentially determines the
probability, 1� e

��(t), of an individual becoming exposed at time t.
It is di↵erent for di↵erent population groups and takes into account
interactions between the groups, thus coupling their dynamics.

Hazard Rate Community

�c(t) = �
h
(Ic + "Ec) + �((1� ⌫)Ic,q + "Ec,q) +

⇢[(Ih + "Eh) + �((1� ⌫)Ih,q + "Eh,q)]
i
/Nc ,

with
Nc(t) = Sc + Ec + Ic + Rc + ⇢(Sh + Eh + Ih + Rh).

Hazard Rate Health Care Workers

�h(t) = ⇢�c + �⌘
h
(Ih + "Eh) + ⌫(Ih,q + Ic,q)

i
/Nh,

with
Nh(t) = Sh + Eh + Ih + Rh



Oahu Island

Oahu

Oahu is the most populated
island in the chain, providing an
appropriate data set for
interpretation of our models as
well as guidance for the entire
state.

Island specific regulations

We focus specifically on Oahu, the
most-a↵ected by COVID-19 Island as of
now, since each island (or group of
islands in the case of Maui) has its own
mayor and thus restrictions and
governmental actions may vary slightly
within the entire state as they are
determined not only uniformly by the
Governor but also by the Mayors and
local governments of the outer islands.



Variable and Parameters for Oahu Model

Parameter, meaning Value

�, basal transmission rates optimized to fit data
Factors modifying transmission rate

", asymptomatic transmission 0.75
⇢, reduced healthcare worker
interactions

0.8

�, quarantine 0.2
, hospital precautions 0.5
⌘, healthcare worker
precautions

0.5

⌫, symptomatic hospitalization 0.08



Variable and Parameters for Oahu Model

Population fractions
pi , i =0,. . . ,13, onset of
symptoms after day i

0.000792, 0.00198, 0.1056, 0.198,
0.2376, 0.0858, 0.0528, 0.0462,
0.0396, 0.0264, 0.0198, 0.0198,
0.0198, 0

qa,i , i =0,. . . ,13,
asymptomatic quarantine after
day i

0 before June 10, then
q5 = q6 = q7 = 0.05

qs,i , i =0,. . . ,4, symptomatic
quarantine after day/stage i

C: 0.1, 0.4, 0.8, 0.9, 0.99;
H: 0.2, 0.5, 0.9, 0.98, 0.99

r, transition to next
symptomatic day/stage

0.2



Choice of Parameters

The model depends on a large quantities of parameters. The pi

(probability for the onset of symptoms to appear after day i) and r

the probability for the illness to evolve and eventually recover are
chosen to reflect some CDC estimations.

Asymptomatic

It is based top reflect the assumption that 40% of all infections remain
asymptomatic:

0.4 =
13X

i=0

(i + 1)pi
Qi�1

j=0 (1� pj)

1�
Q13

i=0 (1� pi )
.

Length of Illness

It is base on the assumption that the average length of illness is 17 days:

17 = 2 +
1X

n=3

n(n � 1)(n � 2)

2
r
3(1� r)n�3 = 2 +

3

r
.



Initial Conditions

The initial values of most variables are zero. The only non-zero
values are the number of susceptible individuals in the general
community and the healthcare worker community, Sc(0) = 937711,
Sh(0) = 15000.

First COVID-19 case, March 6, 2020

In addition, we assume a single not quarantined symptomatic individual,
reflecting the first detected case of COVID-19 on Oahu: Ic,0(0) = 1.



Fitting the Curve from March 6 to August 31, 2020

Except for the basal transmission rate � of SARS-CoV-2, our model
parameters are fixed to correspond to available information about the
virus and the disease.

The primary task is to determine model’s parameters necessary for an
accurate data fit of Oahu data from March 6th to August 27. We use data
from the Hawaii Data Collaborative for the count of daily cases as well as
active hospitalisations and active ICU beds a.

a
https://www.hawaiidata.org/covid19

The basal rate of transmission is adjusted in time to reflect
non-pharmaceutical measures taken by state of Hawai’i during this
pandemic.

Basal Transmission Rates

They are obtained by optimizing the fit to the data using the
Levenberg–Marquardt algorithm.



Optimized Transmission Rates

Here are the optimized transmission rates to fit Oahu data. They
reflect the State and Oahu non-pharmaceutical mitigation measures.

March 6 - April 2 April 2 - May 20 May 20 - May 30
� = 0.3657 � = 0.0491 � = 0.1133
May 30 - June 10 June 10 - Aug 11 Aug 11 - Aug 27
� = 0.2109 � = 0.1694 � = 0.1086



Daily Cases Fit
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Figure: Daily cases. Dots are the actual data and the plain line represents
the model. We also delineate the various mitigation measures that took
place during that period.



Data Fit for Data on Active Hospitalization and ICU Beds

An important quantifier in COVID-19 is the number of hospitalization
and ICU beds. Since we have seen hospitals throughout the world
being overwhelmed by the number of COVID-19 patients, it is a
critical element of mitigation strategy. The data are shown starting
July 18, since the numbers for earlier dates have not been released by
the Department of Health.
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Figure: Data fit for data on active hospitalization (blue) and ICU beds
(green). Real data are dots (State) and model predictions are lines (Oahu).



Revisiting the Past

We first retrospectively predict the impact on the number of hospitalisations
and ICU beds if proper testing/contact tracing and quarantine measures
would have been in place on June 10, corresponding to the date when many
of the Hawai’i stay-at-home restrictions were lifted.



Contact Tracing Assumption

In our data fit, we assumed that starting June 10, 15% of the
asymptomatic people are going into quarantine as the result of
testing and contact tracing. More precisely, we assume we catch
about 14.3% of asymptomatic population as follows: 5% after day 5
of being exposed, then 5% of the remaining after day 6 of exposure,
and then another 5% of the remaining after day 7.

We will denote this scenario as 5 : 0.05, 6 : 0.05, 7 : 0.05 (days 5,6
and 7, each at 5%).

Impact Factors

There are several factors which a↵ect the number of asymptomatic
individuals going into quarantine, thus slowing down the spread of the virus:
improved testing with more rapid turn around, increased contact
tracing, and dedicated quarantine facilities.



Impact of early asymptomatic quarantine

Table below shows the impact of the earlier detection on the total
number of cases from June 10 to August 27 as well as on the
cumulative number of active hospitalisations and active ICU patients
for the two and a half month period. These cumulative numbers are
computed by summing up the number of all hospitalized (ICU)
patients for each day.

Testing/Contact
Tracing

Total Cases Cum act
Hospt.

Cum act
ICU

5:0.05, 6:0.05, 7:0.05 6517 4721 944
3:0.05, 4:0.05, 5:0.05 5658 4163 833
2:0.05, 3:0.05, 4:0.05 5102 3799 760

5:0.1, 6:0.1, 7:0.1 5760 3953 791
3:0.1, 4:0.1, 5:0.1 4346 3088 618
2:0.1, 3:0.1, 4:0.1 3551 2590 518



Impact of the volume of asymptomatic quarantine
The actual percentage of detected asymptomatic individuals is
a↵ected by the amount of testing done, by the amount of contact
tracing resources available, and in large part, by quarantine facilities.
Quarantine facilities are particularly important for the Oahu
modeling, since a large number of residents live in multi-generational
and non-family member shared households. Note that the quarantine
fraction of 0.1 on each of the three days leads to the overall 27%
detection of asymptomatic cases, 0.2 reaches 48.8%, and 0.3 reaches
65%.

Testing/Contact
Tracing

Total Cases Cum act
Hospt.

Cum act
ICU

5:0.05, 6:0.05, 7:0.05 6517 4721 944
5:0.1, 6:0.1, 7:0.1 5760 3953 791
5:0.2, 6:0.2, 7:0.2 4499 2865 573
5:0.3, 6:0.3, 7:0.3 3573 2175 435



Alternate scenarios
Our model suggests a larger benefit when asymptomatic individuals
are caught early. Combining both of the above factors, we create
various scenarios to predict how the total hospitalisation and ICU
beds would have been a↵ected.
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Figure: Comparison of the daily cases real data fit (plain line) to two
alternate scenario assuming 3 : 0.15, 4 : 0.2, 5 : 0.1 (dash line) and
2 : 0.15, 3 : 0.3, 4 : 0.2 (dotdash line) respectively for testing/contact tracing
and quarantine.



Hospitalisation and ICU variations for di↵erent scenarios

Testing/Contact
Tracing

Total Cases Cum act
Hospt.

Cum act
ICU

5:0.05, 6:0.05, 7:0.05 6517 4721 944
3:0.15, 4:0.2, 5:0.1 3249 2269 454
2:0.15, 3:0.3, 4:0.2 1667 1208 242



Discussion

Data Fitting

A zoom on the data fit for dates between March 6 and May 30 demonstrates
the e�ciency and good timing of the first stay-at-home order, Hawai’i even
being referred at the time as the safest state. Starting in mid-June we see
the daily cases increasing and following an exponential trend for a 40 day
period to become one of the worst states in dealing with the pandemic.

Contact Tracing/Testing and Quarantine

We show that with an increased structure of testing/contact tracing and
quarantine facilities, we could have dramatically impacted the outcome as of
August 27. Our results show that earlier detection of asymptomatic
individuals has the most e↵ect on the behavior of the model. Assuming we
traced and quarantine successfully 52% of the asymptomatic population
after days 2, 3 and 4 (more dominantly after day 3 of being exposed), we
would have seen a reduction of 4850 total daily cases, 3513 cumulative
active hospitalisation and 702 cumulative active ICU beds which is
equivalent to a reduction of about 74% for total daily case, and for both
hospitalisation and ICU beds.



Oahu Improved Contact Tracing



Forecasting Scenarios
The data fitting and parameter matching specific to our Oahu data
allows us to better understand the e↵ects of the various parameters
as well as the transmission rate fits. We then use this to provide
scenarios past August 27, 2020 that are dependant on
testing/contact tracing and quarantine measures.

The transmission rate is adjusted for each scenario depending on
various societal events: stay-at-home order (we assume � slightly
higher than during the first stay-at-home order due to community
spread); Labor day holiday weekend (increase in transmission rate for
a few days); lifting the stay-at-home order on October 5 (varies
depending on population behavior), Thanksgiving holiday.



Scenario 1

Assumptions

Very aggressive testing/contact tracing and facility quarantine but moderate
compliance in individual behavior. Assumes catching a total of 78% of
asymptomatic individuals between days 2 and 4 of exposure. We assume the
population will behave similarly to what happened after June 10 once the
stay-at-home order is lifted.

Transmission rates for Scenario 1
Aug 30 - Sep 11 Sep 11 - Sep 14 Sep 14 - Oct 5
� = 0.09 � = 0.12 � = 0.09
Oct 5 - Dec 1 Dec 1 - Dec 5 Dec 5 - Dec 31
� = 0.17 � = 0.2 � = 0.17

Testing/Tracing for Scenario 1: 2:0.4, 3:0.4, 4:0.4



Scenarios 2 and 3

Transmission rates for Scenario 2 and 3
Aug 30 - Sep 11 Sep 11 - Sep 14 Sep 14 - Oct 5
� = 0.09 � = 0.12 � = 0.09
Oct 5 - Dec 1 Dec 1 - Dec 5 Dec 5 - Dec 31
� = 0.145 � = 0.2 � = 0.145

Testing/Tracing for Scenario 2: 0.2, 3:0.2, 4:0.2
Testing/Tracing for Scenario 3: 3:0.2, 4:0.2, 5:0.2

Assumptions

More realistic testing/contact tracing and facility quarantine but higher
compliance in individual behavior starting after lifting the stay-at-home
order on October 5. Assumes catching a total of 49% of asymptomatic
individuals between days 2 and 4 of exposure. We assume the population
will behave in a more compliant way than what happened after June 10
once the stay-at-home order is lifted. The transmission rate is thus reduced
from 0.1694 to 0.145. Scenario 3 is identical to scenario 2 but with more a
relaxed testing/contact tracing and facility quarantine.



Simulating Scenarios 1,2 and 3: Daily Cases
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Figure: Scenario 1: plain line. Scenario 2: dot-dash line. Scenario 3: dash
line. Scenario 1 is better at first but scenario 2 is provides the best outcome
over the long run.



Simulating Scenarios 1,2 and 3: Daily Cases

Peak for Each Scenario

It is important to note that the wave for scenario 2 starts to decrease in
early 2021, while the number of daily cases for scenarios 1 and 3 keeps
increasing, with a peak of 594 daily cases on April 3 for scenario 1, and a
peak of 541 daily cases on April 23 for scenario 3.

1 For scenario 2, the maximum daily cases will not exceed 193 and the
peak will occur in early December due to an assumed increase in
non-compliance during the Thanksgiving holiday

2 For scenario 3 we are looking at 541 cases in early April

3 We reach 594 cases in late April for scenario 1.



Discussion
We demonstrate how di↵erent transmission rates and testing/contact
tracing, quarantine facilities a↵ect the future of the curve. The take
away from these results is that to succeed in controlling the curve, we
need a combination of aggressive testing/contact tracing, quarantine
facilities as well as compliance from individual to keep the
transmission rate to lower levels.

Contact Tracing/Testing and Quarantine

Scenario 1 assumes almost perfect success in quarantining exposed
individuals but transmission rates comparable to what we had after the
State lifted the first stay-at-home order. Scenario 2 assumes better
compliance from the population (lower transmission rate �) and aggressive
but doable contact tracing; it provides the best outcome. Scenario 3 with
same transmission rate as scenario 2 but shifting the contact tracing by one
day shows significantly more cases.

The conclusion is that to control the curve long term we need both:
aggressive contact tracing and high compliance from the population.



Conclusion

If provided contact tracing was in place with quarantine facilities as
well as explicit guidance for the public on how to behave and
compliance to those, we would be now under 50 daily cases and a
second stay-at-home would not have been necessary

Economic Impact

The best alternate scenario reduces the total hospitalisation and ICU beds
by 74% which amount to almost $10 million. Contact tracing, as well as
quarantine facilities also have a cost, but it will be quite lower. Comparing
the forecasting scenario, we obtain that as of December 31, scenario 2 saves
more than $12 million compared to scenario 3 and scenario 1 saves almost
$4 million compared to scenario 3. Those amounts increase quite
dramatically after December 31, 2020.



Future work

I The State of Hawai’i is, since March 26, 2020, in an e↵ective
isolation bubble following the mandatory 14-day traveler
quarantine that has not yet been lifted. The interisland
quarantine was lifted on June 16 and then partially reinstated on
August 11. This is the reason why travelers are not explicitly
included in our work; they are currently virtually nonexistent
(counts dropped to the lower hundreds from a historical norm of
about 30,000 a day). Traveling is reopening again, we are
working to add tourists and traveler residents in the model.

I Current work is introducing a new variable category of individual
that reflect vaccination. Indeed, our compartmental model can
be used to account for the additional sub-population of the
vaccinated.

I Understanding how the flu is going to interact with COVID-19 is
another big unknown.



MAHALO!




