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= Energy Technology Centre (TZE)

Located in Ruhstorf a.d. Rott, BY
~25 Employees

~13 Projects parallel

Main research areas:

Energy Storage

Energy Systems

Energy Efficiency

Smart Grids
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« Electrical grids are evolving from centrally managed critical infrastructure
to distributedly managed Smart Grids.
« This is driven by the need to incorporate local production capabilities of renewable energy resources.

centralised decentralised distributed

Source: 1983~enwiki, https://commons.wikimedia.org/wiki/File:Centralised-decentralised-distributed.png, CC-BY-SA-3.0
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dgisciue Motivation

« Electrical grids are evolving from centrally managed critical infrastructure
to distributedly managed Smart Grids.
« This is driven by the need to incorporate local production capabilities of renewable energy resources.

centralised decentralised distributed

* Problem: This paradigm shift leads to a considerable increase in the complexity of network A
management tasks. IARIA
« Approach: Cellular network segmentation, especially holar structures. -

Source: 1983~enwiki, https://commons.wikimedia.org/wiki/File:Centralised-decentralised-distributed.png, CC-BY-SA-3.0
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4 | Holarchies and Holons

Holar Structures: )

- These systems seek to leverage formation and | ‘
segmentation by enabling the reuse of mechanisms
on different hierarchical levels.

- Entities in such a system are called Holons. e,

- Holons are simultaneously a ,whole“ and a ,part® of | | OC |
something bigger. |

- The emerging system-of-systems structure is
referred to as a holarchy.

(a)Holarchies Split

Holarchical Model

(c) Hierarchies Split

Hierarchical model

(d) Hierarchies Merge

Fig. 1: Holarchical model versus Hierarchical model

Source: R. Egert, C. G. Cordero, A. Tundis, and M. Mu hlha user, “HOLEG: A simulator for evaluating resilient energy networks based on the Holon analogy,”
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4 | Holarchies and Holons

Holar Structures: ' 7 L

- These systems seek to leverage formation and |
segmentation by enabling the reuse of mechanisms
on different hierarchical levels.

- Entities in such a system are called Holons. S o —

- Holons are simultaneously a ,whole“ and a ,part® of | | (== |
something bigger. |

- The emerging system-of-systems structure is
referred to as a holarchy.

(a)Holarchies Split

Holarchical Model

(c) Hierarchies Split

Hierarchical model

(d) Hierarchies Merge

HOlonS: Fig. 1: Holarchical model versus Hierarchical model

- Are dynamic cells, which can merge with other holons or
seperate into individual smaller ones, see Figure 1.

- Under optimal conditions, holons tend to form larger holons.

- Holarchies are mainly based on the concepts of isolation
and containment.

Source: R. Egert, C. G. Cordero, A. Tundis, and M. Mu'hlha user, “HOLEG: A simulator for evaluating resilient energy networks based on the Holon analogy,”
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 We consider single buildings to be atomic building blocks of holons.

* They may be both producer and consumer, so-called prosumer.
- To facilitate holon creation and stable operation, accurate models for
bahavior of these prosumers are necessary.
- This entails the need for a framework that is capable of forecasting both
electrical load and production behaviors.

- The main contributions of the proposed framework are:
- Dynamic control via smart strategy selection for holonic smart microgrids.
- Advancement of current smart microgrid capabilities by
enabling forecasting and operation optimization on the
level of atomic holons.
- Showcasing the applicability of the current deployment by
deploying it at a real-world prosumer site.
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P Grid ENVIRONMENT | The four components of an atomic holon:
ower | (can but does not need to implement all)
l 1. Consumer: The holons’ total aggregated
Consumer energy consumption.

Producer Storage production capacity, e.g., from solar

photovoltaic or wind turbines.

3. Power Grid: The grid-connected power

supply of the building.

_ _Fi:gu_rc_l._E_ne_rg_y zio_w_b;t\;e;n_th_e _fo;r_di_ff;re_nt_h(_)I;n_cc;m?p;n;nt_s._ _ 4. Storage: The dally prOdUCtion and
consumption variations can be mitigated by
energy storage systems, e.g., batteries or
electric vehicles.

7 ™~ E 2. Producer: The holons’ total aggregated
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| . FRODO .
! PV Load '
' | Production | | Consumption '

' 'ENVIRONMENT |
! E Control Unit]! OLAF .
o .- - -4 Strategy Selection Unit .
R B LogUnit |I e

Figure 2. Structure and information flow within the Framework.

The framework aims to optimize control
strategies in holarchy systems.

A bottom-up approach is chosen.

Regulates the strategic operation within an
atomic holon.

Future work: expand the framework to non-
atomic holons.
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 The framework aims to optimize control
strategies in holarchy systems.

* A bottom-up approach is chosen.

* Regulates the strategic operation within an

atomic holon.

Future work: expand the framework to non-

atomic holons.
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_____________________________

, E The three main parts:

_____ . e Historical Data: Records of power production

' ' and consumption within the holon.

 FRODO (Forecasting of Resources for
Dynamic Optimization): Forecasting of the next

Figure 2. Structure and information flow within the Framework. daysc pr0dUCti0n and Consumption .

 OLAF (Optimal Load and Energy Flow): Select IARIA

the next days' battery charge and discharge
strategy based on the forecast values. -

______________________________
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dpcisce Methods

Historical Data:
» Load consumption and photovoltaic production data are provided by the TZE.
= Recorded discrete hourly power and weather values over two years.
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Historical Data:

» Load consumption and photovoltaic production data are provided by the TZE.
= Recorded discrete hourly power and weather values over two years.

Average Load Profile for Weekday

=== Monday
=== Tuesday

— Wednestay | Ayerage consumption per weekday:

=== Thursday

- ;”faf, » Difference between workday and
=== Saturday
weekend.

=== Sunday
» Clear decrease after friday lunchtime
due to worktime.

Power [kW]
=

10

© % 10 5 0
Hour [hh]
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dpcisce Methods

Historical Data:

» Load consumption and photovoltaic production data are provided by the TZE.
= Recorded discrete hourly power and weather values over two years.

Average Load Profile for Weekday

=== Monday
=== Tuesday

— Wednestay | Ayerage consumption per weekday:

=== Thursday

- ;”faf, » Difference between workday and
=== Saturday
weekend.

=== Sunday
» Clear decrease after friday lunchtime
due to worktime.

Power [kW]
=

10

© % 10 5 0
Hour [hh]

This data provides the basis for the forecasting module FRODO.
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dpcisce Methods

FRODO:

= A precise load consumption and PV production forecast is essential.

» Different approaches are classified by forecast horizont: here Short-Term Load Forecasting (STLF) is used.
» Workflow: (1) Data-preprocessing; (2) model training; (3) model evaluation.

» Used machine leanring models: (1) Random Forest; (2) Long-Short Term Memory Neural Network.

= As well as three persistance models: (1) previous day; (2) last week; (3) weekday average.
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dpcisce Methods

FRODO:

= A precise load consumption and PV production forecast is essential.

» Different approaches are classified by forecast horizont: here Short-Term Load Forecasting (STLF) is used.
= Workflow: (1) Data-preprocessing; (2) model training; (3) model evaluation.

= Used machine leanring models: (1) Random Forest; (2) Long-Short Term Memory Neural Network.

= As well as three persistance models: (1) previous day; (2) last week; (3) weekday average.

TABLE 1. Results of the measurements for the different conducted forecasts Forecast l'eSU"IS'

Model MSE | RMSE | MAE | MPE = Random Forest has an increased accuracy
compared to the other models.

=  Worth mentioning: Random Forest errors

Previous Day 15.82 3.98 2.46 -6.51

Last Week 021 | 304 | 216 | 1B remain mostly the same regardless of the
Weekday Average || 5.42 2.33 1.77 | -3.39 different training splits
RF 486 | 220 | 143 | -1.57 = The Neural Network depends highly on the TARIA
Lstmt 23 | 245 | 167 | a2 segmentation of training and test data. -
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OLAF:
= Based on the forecast values a charge and discharge strategy is chosen.
» The strategies can roughly be divided into three categories: customer-, market- and grid-oriented.
» Some strategy definitions with the primary beneficiary:
» Maximized consumption of self-generated power (grid)
» [imited power grid feed-in (grid/customer)
» Time-scheduled (dis-)charging (grid)
» (Dis-)charging depending on energy pricing (market/customer)
» [ncremental grid relief (grid)
» State-of-Charge dependent charging (customer)
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e | Conclusions & Future Work

= We introduced a framework to provide dynamic control for the holonic smart grid.
= Based on the bottom-up approach, the framework enables holarchical organization.
» The presented approach is designed to improve current smart grid capabilities.
= By providing a modular structure for forecasting and optimization.
» The machine learning models are practicable methods for forecasting consumption and production.
= The framework is able to handle uncertain behavior and divergent forecasts through feedback-loop.
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e | Conclusions & Future Work

= We introduced a framework to provide dynamic control for the holonic smart grid.
= Based on the bottom-up approach, the framework enables holarchical organization.
» The presented approach is designed to improve current smart grid capabilities.
= By providing a modular structure for forecasting and optimization.
» The machine learning models are practicable methods for forecasting consumption and production.
= The framework is able to handle uncertain behavior and divergent forecasts through feedback-loop.

= |In future research, we are improving the forecast models with different
machine learning techniques.

= Defining more strategies to optimize holarchical operation
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7= | Thank you for your Attention

Average Load Profile for Weekday

a) PV Production ; b) Consumption
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