A data-driven approach to measuring financial soundness throughout the world

Alessandro Bitetto¹, Paola Cerchiello¹, Charilaos Mertzanis², Ernst Wit³

¹ University of Pavia, Italy,
² Abu Dhabi University, United Arab Emirates,
³Università della Svizzera Italiana, Switzerland

DATA ANALYTICS 2020 Nice, October 25-29th, 2020

Motivation

- Macroeconomic variables are often used to assess financial stability for countries by the means of synthetic indices based on expert-judgement assumptions of Financial Institutions, e.g. weighted average
- However, for their subjective nature, all indices can be questionable and can lead to endless debate on which one should be used as a robust financial indicator
- The aim of this work is to create a objective, thus data-driven, alternative index

- Annual Financial Soundness Indicators (FSI) provided by International Monetary Fund (IMF) ranging from 2007 to 2017 and for most of worldwide countries, including both strong and developing economies for a total of 119 countries and 17 FSI.
- 6 Hofstede Indicators (Individualism, Masculinity, etc.) for each country, fixed for all years
- 2 Geographical Indicator (Latitude and Longitude)
- Final dataset has n = 119 countries with p = 25 variables for T = 7 years

Methodology

Bitetto, Cerchiello, Mertzanis, Wit

- As the data have 3 dimensions, *Country*, *Variables* and *Time*, two complementary techniques have been used:
 - Principal Component Analysis (PCA) to model country/variables interaction, for each year
 - Factor Analysis (FA) to model country/time interaction, for all variables

Methodology used

- PCA aims to create one or more index variables from a larger set of (a) measured variables, where each index is a linear combination of the Yoriginal variables
- (b) FA models the measurement of latent variables, seen through the relationships they cause in a set of Y variables.

(a) PCA: the model is an equation (b) FA: the model is a set of $C = w_1 Y_1 + \ldots + w_4 Y_4$

equations

$$Y_i = b_i F_1 + u_i, i = 1, \dots, 4$$

- The following PCA techniques have been tested for each year:
 - PCA
 - **Robust PCA**: decompose *M* by solving

minimize $||L||_* + \lambda ||S||_1$ subject to L + S = M

where $\|L\|_*$ is the nuclear norm

• Robust Sparse PCA: minimize

$$f(A,B) = \frac{1}{2} \|X - XBA^{T} - S\|_{F}^{2} + \psi(B) + \gamma \|S\|_{1}$$

where B is the sparse loading matrix, A is orthonormal, ψ is a regulizer (i.e. LASSO or Elastic Net) and S captures outliers

• Robust PCA performed best with an average (over years) Explained Variance of $46\pm3\%$ for the first 2 PC

- Due to small depth of each FSI time series the following approach has been used:
 - Fit a Dynamic Factor Model

$$\begin{cases} \mathbf{F}_{t}^{i} = \mathbf{A}^{i} \mathbf{F}_{t-1}^{i} + \mathcal{N}(0, \mathbf{Q}^{i}) \\ \mathbf{y}_{t}^{i} = \mathbf{C}^{i} \mathbf{F}_{t}^{i} + \mathcal{N}(0, \mathbf{R}^{i}) \end{cases}$$

for each of *n* country, obtaining factor matrices F^i , factor interactions A^i and factor loadings C^i , i = 1, ..., n

- Fit a Vector Auto Regressive (VAR) model in order to get lag-1 matrix that incorporates cross-countries interaction of Aⁱ
- Use Kalman Filter to get smoothed factors $\widehat{F^i}$ using \hat{A} and $\hat{C} = diag(C^i)$ in order to get latent factors that incorporates cross-countries interactions
- Optimal number of factors has been set to 2 with Y-reconstruction error validation

The final index, hereinafter referred as Financial Soundness Index (FSIND), will be constructed by:

- $(n \cdot T) \times 2$ scores matrix in PCA approach
- $(n \cdot T) \times 2$ factor matrix in DFM approach

Index Validation

- Both methodologies produce continuous value for the 2 components of the index
- In order to get a binary index, the following procedure has been followed:
 - $\bullet\,$ set a threshold and get the binary index, i.e. 0 or 1
 - perform a regression task where target is a economic variable (such as GDP or Non Performing Loans) and regressors are the 2 binary using different partitioning algorithm, such as Random Forest and Gradient Boosting Machine
 - evaluate prediction accuracy and outliers for different threshold
- Robust threshold has been set to 0 for both indices

Results and future work

Index comparison

Figure: Robust PCA index for 2014

15 / 20

Index comparison

Figure: DFM index for 2014

Bitetto, Cerchiello, Mertzanis, Wit

Results and future work

16 / 20

Figure: Index evolution over years for Ukraine (both methods agree) and United Kingdom (methods disagree)

FSIND predictive power has been tested on a regression task:

- Dataset consisted of 53 annual macro-economic variables ranging from 2007 to 2017 for \sim 65,000 firms from worldwide countries, matched with the perimeter used to build our index.
- Target variable is the ordinal indicator of ease in accessing to financial funding, from 1, easiest to 4, hardest
- An ordered probit model is used as baseline model to predict the target variable, given a subset (selected by significance level of coefficients) of the initial 53 variables
- FSIND are used as additional predictors: 2-dimensional PCA version and 2-dimensional DFM version are used on both continuous and binary form

18 / 20

Application results

ACCESS	Baseline	OLS	Probit RE	IV 2SLS	IV GMM
DFM_CONT1	-0.136**	-0.0487***	-0.166**	-0.230***	-0.129**
	(0.0552)	(0.0155)	(0.0722)	(0.0847)	(0.0541)
LISTED	-0.0971***	-0.0247***	-0.117***	-0.0157	-0.00844
	(0.0293)	(0.00766)	(0.0348)	(0.00978)	(0.0117)
AGE	-0.265***	-0.0742***	-0.234***	-0.0787^{***}	-0.0910***
	(0.0415)	(0.0112)	(0.0503)	(0.0131)	(0.0154)
SIZE	-0.137***	-0.0401^{***}	-0.0534***	-0.0364***	-0.0449***
	(0.0131)	(0.00351)	(0.0160)	(0.00425)	(0.00503)
SECTOR	-0.119^{***}	-0.0325***	-0.114^{***}	-0.0279***	-0.0281***
	(0.00959)	(0.00259)	(0.0118)	(0.00327)	(0.00391)
SUBSID	-0.0456***	-0.0131***	-0.0526***	-0.00302	-0.0124***
	(0.0120)	(0.00320)	(0.0147)	(0.00396)	(0.00464)
LEGAL	0.0489***	0.0124*	0.0395	0.0241***	0.0336***
	(0.0257)	(0.00689)	(0.0315)	(0.00844)	(0.0101)
LOCATION	0.176***	0.0454***	0.183***	0.0570***	0.0671***
	(0.0206)	(0.00560)	(0.0252)	(0.00683)	(0.00844)
EXPORT	-0.111***	-0.0285***	-0.126***	-0.0195***	-0.0229***
	(0.0217)	(0.00588)	(0.0255)	(0.00648)	(0.00837)
AUDIT	-0.0135	-0.00407	-0.0378***	0.00306	0.00477
	(0.0101)	(0.00272)	(0.0124)	(0.00337)	(0.00393)
MANAGEXP	-0.370***	-0.0940***	-0.649***	-0.0670***	-0.0880***
	(0.0699)	(0.0186)	(0.0832)	(0.0226)	(0.0263)
L_MANAGEXP	0.262***	0.0734***	0.283***	0.0245	0.0499**
	(0.0576)	(0.0155)	(0.0700)	(0.0189)	(0.0218)
Year Effect	Yes	Yes	No	Yes	Yes
Country Effect	Yes	Yes	Yes	Yes	Yes
Chi-square	8131.98	9958.76	467.67	21201.72	59707.78
Sargan j				140.35	
(p-value)				(0.0033)	
Hansen					0.089191
(p-value)					(0.7652)
N.	64717	64717	64717	43243	31942

Bitetto, Cerchiello, Mertzanis, Wit

Results and future work

- FSIND must be compared with other economical indices and find meaningful economical explanation
- FSIND robustness should be futher tested with alternative approaches, such as tensor decomposition
- Additional methodologies involving *Network Theory* should be tested for comparison:
 - Factorial Graphical Model for a time-independent estimation
 - Time Series Chain Graphical Model for time-dependent estimation

and centrality measures could be used as FSIND weights