

The Ninth International Conference on Data Analytics DATA ANALYTICS 2020 October 25, 2020 to October 29, 2020 - Nice, France

An Intelligent Recommender System for E-learning Process Personalization A Case Study in Maritime Education

Stefanos I. Karnavas¹Alexandros Bousdekis^{2*}Stavroula Barbounaki³Dimitris Kardaras²

¹Merchant Marine Academy of Oinousses, Oinousses, Greece

²Business Informatics Lab, Department of Business Administration, School of Business, Athens University of Economics and Business (AUEB), Athens, Greece

³Merchant Marine Academy of Aspropyrgos, Aspropyrgos, Greece

*albous@mail.ntua.gr

Presenter's Resume

Alexandros Bousdekis

- Current position
 - Post-doctoral Researcher (Athens University of Economics and Business)
 - Title of postdoctoral research: "Advanced data analytics and knowledge discovery for e-service customization"
- Education
 - PhD in Information Systems (National Technical University of Athens)
 - MSc in Manufacturing Systems Engineering (University of Warwick, UK)
 - BSc in Production and Management Engineering (Technical University of Crete)

- Introduction
- Research Methodology
- Results
- Conclusions & Future Work

Introduction

- Research Methodology
- Results
- Conclusions & Future Work

Motivation

- The pandemic of COVID-19 caused the closing of classrooms all over the world and forced 1.5 billion students and 63 million educators to suddenly modify their face-to-face academic practices.
- Higher education institutions were forced to shift rapidly to distance and online learning.
 - On the one hand, this fact revealed the **weaknesses of adoption and utilization of e-learning strategies** and technologies as well as inequalities.
 - On the other hand, it resulted in a **digital revolution of education**.
- **E-learning personalization** is emerged as a major challenge, especially in today's fast adoption of this alternative way of learning.
- Despite the large amount of research works dealing with **learning profiles** in physical classrooms, these models should be further investigated and validated in the **virtual classrooms**.

Research Objective

- The complete transformation of the physical learning process to a virtual one pose the **challenge of personalization according to different learning profiles**, a research area rather underexplored.
- The objective of the current paper is to develop an intelligent recommender system for supporting the professors in higher education understanding their students' needs so that they adapt the e-learning process accordingly.
- In addition, the proposed recommender system is able to **classify new records (i.e. students) to the appropriate learning profiles**, e.g., in order to support the organization of the class groups.
- The proposed approach was applied to a **maritime educational institution**.

• Introduction

Research Methodology

• Conclusions & Future Work

The Proposed Methodology

- The proposed methodology consists of the following steps:
 - Data Collection and Learning Profile Model Selection
 - Classification for Structuring the Learning Profiles
 - Modelling the Relationships between Learning Profiles and Elearning Preferences
 - Predicting the Class Attribute of E-learning Impact

Data Collection and Learning Profile Model Selection

- The data was collected in the form of an online questionnaire addressed to students of higher educational institution.
- 80 questions in a Likert scalescale
 - (1: Strongly Disagree 5: Strongly Agree)
- Each question was related to one out of the 4 learning styles as defined by the Honey and Mumford Model:
 - Activist: active involvement in the learning activity
 - **Reflector:** watching and thinking about what is happening
 - **Pragmatist:** *learning activities where there is time to observe, reflect and think*
 - **Theorist:** *understanding the theory behind the action*

Classification for Structuring the Learning Profiles

• The classification of students to learning profiles is not straightforward since they may have characteristics of more than one profile.

According to the given answers, the k-means clustering algorithm was applied in order to assign the respondents to 4 clusters (k=4) matching to the aforementioned learning profiles.

Modelling the Relationships between Learning Profiles and E-learning Preferences

- Subsequently, the proposed approach models the relationships between the learning profiles and e-learning contribution to learning factors.
- To do this, a **Bayesian Network (BN)** is applied aiming at identifying these causal and uncertain relationships.

E-learning Contribution to Learning Factors

Predicting the Class Attribute of E-learning Impact

- At any time, the user of the recommender system is able to make queries in order to **investigate particular relationships** along with their associated Conditional Probabilities (CP).
- Moreover, the model incorporates a Naïve Bayes classifier for predicting the class attribute of a learning profile as soon as new records of students' responses are inserted.
- Prediction of the class attribute can be performed even if the questionnaire is not completely answered.

- Introduction
- Research Methodology

Results

• Conclusions & Future Work

Application in Maritime Education

- The proposed approach was applied on a dataset of 268 students of a maritime higher educational institution in Greece.
 - The learning process in **maritime education** faces additional **challenges** due to the structure of their programs, the tendency of undergraduate students to combine studies and work, the internationalization, specialization, and standardization.
 - These make maritime education an interesting case study for the validation of elearning process personalization.
- The implementation and execution of the experiments were performed using the sklearn.cluster library of Python for the k-means clustering algorithm and the BN functionalities of the pgmpy (Probabilistic Graphical Models using Python) package.

Indicative Results

Highest and Lowest Conditional Probabilities (CP)

Classification Performance

	E-learning contribution	Learning profile	СР		E-learning contribution	Learning profile	СР			
	F1={Neutral}, F2={Agree}, F3={Disagree}, F4={Agree}, F5={Strongly Disagree}, F6={Disagree}, F7={Neutral}, F8={Strongly Disagree}, F9={Agree}	Activist	0.386	Lowest CPs	F1={Stongly Agree}, F2={Disagree}, F3={Strongly Agree}, F4={Neutral}, F5={Disagree}, F6={Strongly Disagree}, F7={Neutral}, F8={Strongly Disagree}, F9={Disagree}	Reflector	0.081	Actual Positive Actual Negative	Predicted PositiveTP = 31FP = 4	Predicted NegativeFN = 6TN = 22
	F9={Agree} F1={Disagree}, F2={Disagree}, F3={Agree}, F4={Strongly Disagree}, F5={ Disagree}, F6={Agree}, F7={Neutral}, F8={Disagree}	Theorist	0.295		F1={Agree}, F2={Strongly Disagree}, F3={Agree}, F4={Strongly Disagree}, F5={Strongly Agree}, F6={Neutral}, F7={Agree}, F8={Agree}, F9={Strongly Disagree}	Activist	0.056		$\frac{TP}{TP + FP} = \frac{3}{31}$ $\frac{TP}{TP + FN} = \frac{31}{31 + 1}$	$\frac{1}{4} = 88.57\%$ $\frac{1}{6} = 83.78\%$

- Introduction
- Research Methodology
- Results

Conclusions & Future Work

Conclusions and Future Work

- In this paper, we proposed an **intelligent recommender system for e-learning process personalization**.
 - It identifies the **preferences of each learning profile** in order to support the selection of the appropriate **learning strategies**.
 - It is based on the Honey and Mumford Model of learning profiles and utilizes kmeans clustering and BNs.
- The proposed approach was applied to a dataset of 268 students in maritime education.
 - We presented indicative examples of queries.
 - We validated the model in terms of its precision and recall.
- Regarding our **future work**, we plan to:
 - incorporate additional learning factors with respect to the e-learning impact
 - to apply more machine learning and data analytics methods, with an emphasis on fuzzy methods
 - to expand our research to various universities in order to obtain more generalized results.

Thank you!