Efficient AES Implementation for Better Resource Usage and Performance of IoTs

Authors: <u>Umer Farooq</u>, Maria Mushtaq, Khurram Bhatti Contact: <u>ufarooq@du.edu.om</u>

CYBER 2020, NICE, France

Outline

- Introduction
- Overview of AES
- Proposed Techniques
- Results
- Conclusion

Introduction

- The Internet of Things (IoTs) devices are prevalent in almost every sphere of human life today.
- The amount and nature of data handled by IoT devices makes them a lucrative target for potential attackers.
- In an IoT-based system, securing an edge side device is a hugely challenging task.
- Among the various countermeasures against security threats, cryptographic algorithms offer an interesting solution.
- Advanced Encryption Standard (AES) is an algorithm that offers robust and hardware independent implementation.

Overview of AES

- AES is an iterative algorithm that is implemented over multiple rounds.
- The implementation of AES is mainly divided into two modules:
 - O Cipher module
 - Key expansion module
 - Both modules run in parallel

Cipher Module Implementation (1/2)

			/	S-box				
S _{0,0}	S _{0,1}	Se.2	S _{0,3}		S'0,0	S'0,1	S' _{0,2}	S' _{0,3}
S _{1,0}	Sr,c	S _{1,2}	S _{1,3}		S' _{1,0}	S'r,c	S'1,2	S' _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}		S' _{2,0}	S'2,1	S' _{2,2}	S' _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}		S' _{3,0}	S' _{3,1}	S' _{3,2}	S' _{3,3}

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}	S' _{0,0}	S' _{0,1}	S' _{0,2}	
S _{1,0}	S _{r,c}	S _{1,2}	S _{1,3}	S' _{1,0}	S' _{r,c}	S' _{1,2}	
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}	S' _{2,0}	S' _{2,1}	S' _{2,2}	
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}	S' _{3,0}	S' _{3,1}	S' _{3,2}	

10/26/2020

CYBER 2020, NICE, France

 $S'_{0,3}$

 $S'_{1,3}$

 $S'_{2,3}$

 $\mathbf{S'}_{3,3}$

Cipher Module Implementation (2/2)

CYBER 2020, NICE, France

Proposed Techniques (1/2)

- Technique 1
 - In this technique, S-box for both cipher module and key expansion module are implemented using BRAMs.
 - It is executed in a serialized manner.
 - First key is expanded and then cipher module is executed.
- Technique 2
 - Both cipher and key expansion module are implemented in BRAMs.
 - Parallelism is achieved through loop unrolling
- Technique 3
 - S-box of cipher module in BRAMs whereas entire key expansion module in CLBs of the FPGA
 - Execution is performed in serialized manner
- 10/26/2020

Proposed Techniques (2/2)

Technique 4

- S-box of cipher module in BRAMs whereas entire key expansion module in CLBs of the FPGA
- Parallel execution achieved through loop unrolling and online key generation.
- Better delay results, but poor area results.
- Technique 5
 - Both cipher module and key expansion module are implemented entirely in CLBs
 - Implementation of S-box in CLBs leads to very good delay results.
 - Very high resources in terms of CLBs are required.
- 10/26/2020

Results

Technique	Number of Slice Registers	Number of Slice LUTs	Frequency (MHz)	Throughput (Gb/S)	Efficiency
Technique 1	278	3315	137.29	17.57	4.85
Technique 2	1547	3253	223.03	28.54	5.89
Technique 3	280	4307	207.74	26.6	5.78
Technique 4	1589	4530	214.96	27.51	4.51
Technique 5	256	9375	886.64	113.49	11.78

Results

Results

Exploration Technique

Conclusion

- Modern IoT-based systems are quite heterogeneous in nature and they are subject to all sort of security threats.
- In this work, based on various algorithmic and architecture level optimization, we explore five different implementations of AES.
- Results show that
 - Serialized implementations are good for resource constrained devices
 - Parallel implementations give good frequency results, but they are resource hungry.

Thanks!!!

10/26/2020

CYBER 2020, NICE, France