
PCache: Permutation-based Cache to Counter
Eviction-based Cache-based Side-Channel

Attacks
M. Asim Mukhtar 1 M. Khurram Bhatti 1 Guy Gogniat 2

1 Information Technology University, Lahore, Pakistan

2 University of South Brittany, Lorient, France

About Presenter: Muhammad Asim Mukhtar

• Asim Mukhtar is a Ph.D. student and an Eiffel Vade-Macum research
Fellow at Information Technology University, Lahore, Pakistan. His
supervisors are Dr. Khurram Bhatti from Information Technology
University, Lahore, Pakistan, and Dr. Guy Gogniat from University of
South Brittany, Lorient, France. His research work mainly focuses to
mitigate cache-based side-channel attacks by modifying cache
architectures.

• Email : asim.mukhtar@itu.pk

Introduction

Security Threat: In cloud computing, some components are used by
attackers as a side-channel to steal secrets of co-running applications.

Introduction

Victim
VM-2

VM-3

Hypervisor

Hardware

Attacker
VM-3

Caches

Cache-based side-channel attacks [M.
Werner, USENIX Security 2019]

• Extracting keys of cryptographic
algorithms (RSA, AES, etc).

• Monitoring keystrokes.

• Reading unauthorized address
space.

Introduction

• Unfortunately, existing countermeasures disable sharing, which incurs
underutilization.

• Countermeasures retaining shared cache design are not secure.

• Our Goal: To achieve security against cache-based side-channel attacks
while
• Retaining the shared cache design
• Negligible performance overhead

• Our Solution: Permutation based cache architecture

Outline

• Background

• Security Issue: Prime+Probe Attack

• Prior countermeasures their Limitations

• Direct Relation problem

• PCache

• Security and Performance Results

Caches

Core 1

Cache

DRAM

Core 1

Longer
Time

Shorter
Time

Background: Cache structure and Mapping

A 1
Set 0

Set 1

Set 2

Set 4

Set 3

Way 0 Way 1 Way 2 Way 3

Memory Address

Cache

IndexTag

A

B 1

D 1

C 1

E 1

B CDE

8/28

Eviction based Cache Side Channel Attacks:
Prime+Probe Attack

Cache

Attacker
Address
Space

Victim
Address
Space

Set 0

Set 1

Set 2

Set 3

Set 4

A1

A2

A3

A4

V1

If (secret == 1)
func(V1);

else
func(V5);

V5

Victim Code

Eviction Set 9/28

Prime+Probe Attack: Prime Step

Cache

Attacker
Address
Space

Victim
Address
Space

A1 A2 A3 A4Set 0 A2

longer Time

Set 1

Set 2

Set 3

Set 4

A1

A2

A3

A4

V1

V5

Eviction Set 10/28

• Attacker finds the
eviction set, which
are the memory
addresses that
collide with the V1.

• Attacker fills the
cache with the
eviction set memory
addresses by
accessing them

Prime+Probe Attack: Waiting steps

Cache

Attacker
Address
Space

Victim
Address
Space

A1 A2 A3 A4Set 0 V1

Set 1

Set 2

Set 3

Set 4

A1

A2

A3

A4

V1

V5

Eviction Set

• Attacker waits for
the prefixed time
and call the victim to
execute.

• Let say while
execution victim
evicts A2.

Prime+Probe Attack: Probe Step

Cache

Attacker
Address
Space

Victim
Address
Space

A1 A2 A3 A4Set 0 V1

longer Time

Set 1

Set 2

Set 3

Set 4

A1

A2

A3

A4

V1

V5

Eviction Set

• Attacker again check
the state of cache by
accessing all
members of eviction
set

• If attacker finds any
member of eviction
set evicted form the
cache, it gets the
information that
victim has accessed
the Set 0.

Prior Countermeasures

Attacker
Address
Space

Victim
Address
Space

A2

A1

A3

A4

Set 0

V1

Set 1

Set 2

Set 3

Set 4

Cryptographic Function

• ScatterCache [M. Werner,
USENIX Security 2019]

• CEASER [M. K. Qureshi,
MICRO’18]

Way 0 Way 1 Way 2 Way 3

• As memory address
mapping is secret,
eviction set is unknown
to attacker

• Security depends on
that the attacker
cannot find eviction set.

Limitation in ScatterCache and CEASER

1) Prime - Attacker randomly chooses memory addresses and places
them in cache.

2) Prune - Attacker ensures that all accessed addresses are in cache by
re-accessing.

3) Call the victim to execute.

4) Probe - Attacker accesses again all addresses and observes access
latency.

Prime+Prune+Probe technique can reveal eviction sets [A. Purnal et al. , S&P’ 2020]

Our Perspective About Problem

• Direct Relation Problem

• Our Hypothesis
• Eliminating direct relation

between incoming memory
address (V1) and evicted cache
line (A3) can make impractical
for attacker to find eviction set
by generating random
collisions in cache.

A18

A2 A9 A13 A17

A4 A1 A14

A6 A10 A3

A7 A11 A15

A18

A19

A8 A12 A16

A2

A1

A3

A0

A1

Cryptographic Function

V1

Evicted
15/28

Pcache: Realization of Direct Relation Elimination

16/28

A4

A2

A5

V1

A6

A3

A1

A7

A9

A7

P1P0 P2 P4P3 P5 P7P6 P8

A1

A8

Group 1 Group 2 Group 3

Permutation
Functions

W0 W1 W2 W3 W4 W5 W6 W7 W8

Incoming
Mem Block

Pcache: Realization of Direct Relation Elimination

17/28

A4

A2

A5

A6

A3

A1

A7

A9

A7

P1P0 P2 P4P3 P5 P7P6 P8

A5

V1

A8

Group 1 Group 2 Group 3

Permutation
Functions

W0 W1 W2 W3 W4 W5 W6 W7 W8

V1 replaced A5 and A5 relocated to group 2

Pcache: Realization of Direct Relation Elimination

18/28

A4

A2

A5

A6

A3

A1

A7

A9

A7

P1P0 P2 P4P3 P5 P7P6 P8

V1

A1

A8

Group 1 Group 2 Group 3

Permutation
Functions

W0 W1 W2 W3 W4 W5 W6 W7 W8

A5 replaced A1 and A1 relocated to group 3 A1

Pcache: Realization of Direct Relation Elimination

19/28

A4

A2

A5

A6

A3

A1

A7

A9

A7

P1P0 P2 P4P3 P5 P7P6 P8

V1

A1

A1

Group 1 Group 2 Group 3

Permutation
Functions

W0 W1 W2 W3 W4 W5 W6 W7 W8

Evicted

A1 replaced A8 and A8 evicted

A8

Security Perspective of PCache

Group 1

Group 2

Group 3

Incoming Memory Block
Hidden members in Eviction set,
which are impractical to find.

Evicting members of eviction set

Possible Attack to Find hidden members
Breaking Branch Technique

1) Attacker randomly chooses memory
addresses and places them in cache.

2) Attacker ensures that all accessed.
addresses are in cache by re-accessing.

3) Call the victim to execute.
4) Attacker accesses again all addresses

and observes access latency to find
evicting members of eviction set.

Prime +Prune+Probe Attack
to find evicting members

Breaking Branch to find hidden
members

1) Attacker again accesses addresses
except one.

2) Attacker ensures that all accessed.
addresses are in cache by re-accessing.

3) Call the victim to execute.

4) Attacker accesses again all addresses
and observes access latency of A4.

Possible Attack by Estimating Eviction
Distribution
• The attacker randomly fills whole Pcache.
• Then allows the interested victim program to access PCache, which causes.
• eviction of attacker’s filled cache lines.
• The attacker observes these evictions and relates the cache lines having

high eviction probability with the interested victim access.
• The attacker has to access as many times to ensure that all possible

evicting cache lines should be selected multiple times for eviction. The
number of memory accesses can be modeled as coupon collector’s
problem.

• If attacker can distinguish the eviction distributions per each victim
memory access, then there is a possibility that an attacker can steal
secrets.

Security Evaluation

• We build functional model of PCache using Python.

• We evaluated the security using
• Prime+Prune+Probe and breaking branch technique.
• Eviction distribution Estimation

• For time analysis, we used following data [A. Purnal et al. , S&P’ 2020]
• cache hit time = 9.5ns,
• cache miss time = 50ns ,
• victim execution time = 0.5ms and
• cache flush time = 3.6ms.

23/28

Prime+Prune+Probe and Breaking Branch Technique

Capacity
Attacker access to find Non-

Evicting Members (k)
Time to find Non-Evicting

Members (hours)
Attacker access to find

hidden members (k)
Time to find hidden

members (hours)

1 301 0.39 113.03 613.6

8 411 1.04 919.52 12605.8

10 491 1.17 1150.68 18497.1

• We extracted victim and attacker access to find 1000 evicting and hidden members
using Prime+Prune+Probe and breaking-branch technique. Then, we have averaged
1000 samples to form finding time of one member of eviction set.

• Following Table shows that attacker would need ≈25 months (or 2 years) to learn
eviction set against one memory address in 10MB cache with 32 ways and 4 groups.

Eviction Distribution Estimation

25/28

Eviction caused by repeatedly
accessing single victim memory

addresses

Eviction caused by repeatedly
accessing 100 sequenced victim

memory addresses

Empty locations
can be used by
attacker to identify
the incoming
memory address

Because of no
empty locations, It
is impractical for
attacker to identify
the incoming
memory address

Eviction distribution is developed by accessing victim memory access 18.86k times on 8MB

cache with 32 ways and 4 groups.

Performance Evaluation

• We have build the PCache in ChampSim. [D. Sanchez ISCA 2013].

• We have used weighted speed-up metric to quantify performance.

• We have normalized 32/4 PCache performance relative to baseline
architecture.

Baseline Configuration

Cores 2 cores , 2.2 GHz, OoO model

L1 Cache Private, 32kB, 8-way set associative, split D/I

L2 Cache Private, 256kB, 8-way set associative

L3 Cache Shared, 8MB, 32-way set associative

26/28

PARSEC Benchmark 3.0

Performance Results

27/28

PCache with random replacement policy shows less degradation as compared to baseline on some

workloads, which is 1.6% at maximum.

Conclusions

• We have presented a cache design that provides security against
eviction-based cache-based SCAs by making large eviction sets and
introducing hidden members in the replacement process.

• Our evaluation shows that, for 10MB cache, the attacker needs 2
years to learn eviction set against one memory address.

• Overall, the performance loss is only 0.002% on average as compared
to the set-associative cache over SPEC CPU2017.

Thank you

