

DIPARTIMENTO DI INFORMATICA, SISTEMISTICA E COMUNICAZIONE

Human-Machine Interaction: EEG Electrode and Feature Selection Exploiting Evolutionary Algorithms in Motor Imagery Tasks Aurora Saibene, Francesca Gasparini

> Aurora Saibene a.saibene2@campus.unimib.it

Multi Media Signal Processing Laboratory (https://mmsp.unimib.it/) Department of Informatics, Systems and Communications University of Milano-Bicocca

October 18-22, 2020

Short Resume

PhD student in Computer Science at the University of Milano-Bicocca.

Main research interests:

- Brain-related topics, especially brain computer interfacing;
- Signal processing: from electroencephalographic signals to underwater images;
- Artificial intelligence techniques in different applications: discriminate effects on time-series, learn new features, classify memes.

Trying to learn new things especially by interacting with other researchers and with the students I am tutoring, both in a Machine Learning course and for thesis completion.

Overview

- 1 Introduction
- 2 Aim
- Background
- 4 Proposed Approach
- 6 Discussion
- 6 Conclusion and Future Work

Introduction [1/4]

Introduction [2/4]

- is non-invasive;
- records brain activities and functions;
- is characterized by frequency bands;
- has temporal and spatial resolutions.

Introduction [2/4]

- is non-invasive;
- records brain activities and functions;
- is characterized by frequency bands;
- has temporal and spatial resolutions.

Introduction [2/4]

- is non-invasive;
- records brain activities and functions;
- is characterized by frequency bands;
- has temporal and spatial resolutions.

- is easily affected by noise;
- is heterogeneous.

Introduction [3/4]

Human-Machine Interaction: EEG Electrode and Feature Selection Exploiting Evolutionary Algorithms in Motor Imagery Tasks

Features

- Type: limited;
- Selection/Extraction: a priori, dimensionality reduction, ignores spatial and type contributions;
- Purpose: improve performance.

Introduction [4/4]

Human-Machine Interaction: EEG Electrode and Feature Selection Exploiting Evolutionary Algorithms in Motor Imagery Tasks

Literature

- Type: limited;
- Selection/Extraction: a priori, dimensionality reduction, ignores spatial and type contributions;
- Purpose: improve performance.

Proposed

- Type: combinations of heterogeneous features;
- Selection: ignores a priori knowledge;

• Purpose: access spatial and type contributions.

Provide a benchmark to highlight spatial and feature type contributions

Contributions

- Population-based approach;
- Heterogeneous features;
- **3** Evolutionary Feature Selection (EFS);
- **4** Analyses of electrodes and feature type contributions.

Background

- Core: EFS → minimum number of features, maximum classification accuracy;
- Advantages: no field knowledge, different solutions with single execution.
- **Literature**: electrode set reduction, subject-based approach, poor number of instances [1][2][3].

Background

- Core: EFS → minimum number of features, maximum classification accuracy;
- Advantages: no field knowledge, different solutions with single execution.
- **Literature**: electrode set reduction, subject-based approach, poor number of instances [1][2][3].

Dataset: EEG Motor Movement/Imagery Dataset [4][5]

- Subjects: 109;
- Instances for motor movement task: 4924 = 2469 LH + 2455 RH;
- Instances for motor imagery task: 4915 = 2479 LH + 2436 RH;
- Sampling rate: 160 Hz;
- Normalization: min-max, Z-score.

Pre-processing and tests

- 1 Notch filter: 50 Hz;
- 2 FIR filter: 7 31 Hz;
- Test on non-normalized (NN-DS), min-max normalized (MM-DS) and z-score normalized (ZS-DS) data.

Feature Computation

 $\begin{array}{l} \textbf{1280} \text{ features} = 64 \text{ electrodes} \times [\text{ 3 Hjorth} \\ \text{params} + 2 \text{ frequency bands} \times (\text{PSD} \\ \text{through Welch} + 3 \text{ modalities} \times \text{PSD} \\ \text{through Morlet}) + \text{statistical measures}]. \end{array}$

- Time-domain: Hjorth parameters [6];
- Frequency-domain: PSD estimation through Welch's method [7];
- Time-frequency domain: PSD extraction through Morlet wavelet convolution [8].

Feature Selection

- Benchmark: principal component analysis and a priori selection;
- EFS techniques: genetic algorithm, particle swarm optimization, simulated annealing
 - wrapper approach \rightarrow SVM with radial basis and scaled gamma;
 - objective functions: performance only, performance/number of features [9]

$$f(x) = \alpha(1 - acc) + (1 - \alpha) \left(1 - \frac{N_{sf}}{N_{if}}\right)$$

• Output: binary vector.

Classifiers

- Binary classification of LH/RH movement/imagination;
- Models: Linear, Quadratic, Cubic, Fine/Medium/Coarse Gaussian SVM models (5-fold cross validation);
- Dataset: (1) all the features; (2) a priori selected; (3) PCA dimensions;
 (4) EFS selected;
- Total number of tests: 11.

Discussion [1/3]

Table: Best results obtained in each test on motor left/right hand movement¹

Test	SVM model	Dataset	<i># features</i>	Accuracy (%)
all features	cubic	ZS-DS	1280	67.8
a priori	mean Gaussian	ZS-DS	100	62.7
PCA	quadratic	MM-DS	43	62.3
GA accuracy	cubic	ZS-DS	662	67.2
GA trade-off	cubic	ZS-DS	646	67.8
PSO accuracy	cubic	ZS-DS	620	67.3
PSO trade-off	quadratic	ZS-DS	675	68.0
SA accuracy	cubic	ZS-DS	1117	68.3
SA trade-off	cubic	ZS-DS	1116	67.8
agreement accuracy	quadratic	ZS-DS	264	66.4
agreement trade-off	cubic	ZS-DS	308	67.5

 1 NN-DS = non-normalized, MM-DS = min-max normalized, ZS-DS normalized data.

Discussion [2/3]

Test	SVM model	Dataset	<i># features</i>	Accuracy (%)
all features	linear	NN-DS	1280	64.3
a priori	linear	ZS-DS	100	59.7
PCA	quadratic	MM-DS	41	59.5
GA accuracy	cubic	ZS-DS	641	63.8
GA trade-off	quadratic	ZS-DS	608	63.7
PSO accuracy	cubic	MM-DS	622	61.7
PSO trade-off	quadratic	ZS-DS	714	64.0
SA accuracy	cubic	ZS-DS	1114	63.6
SA trade-off	cubic	ZS-DS	1117	63.8
agreement accuracy	cubic	ZS-DS	272	62.4
agreement trade-off	quadratic	ZS-DS	313	63.3

Table: Best results obtained in each test on motor left/right hand imagination²

 2 NN-DS = non-normalized, MM-DS = min-max normalized, ZS-DS normalized data.

Discussion [3/3]

Electrodes agreement

- Left/right hand movement: a priori electrodes selected + frontal, parietal and occipital electrodes;
- Left/right hand imagination: a priori electrodes selected + fronto-central, parietal and occipital electrodes;

Feature types

- Left/right hand movement: great influence of statistical measures;
- Left/right hand imagination: great contribution from Hjorth activity parameter;
- Both tasks: presence of time-frequency related features;

Conclusion and Future Work

- Dataset: EEG Motor Movement/Imagery Dataset;
- \checkmark Better results on: z-score normalized dataset \rightarrow heterogeneity mitigation;
- \checkmark Different feature types \rightarrow broaden the analysis;
- The EFS techniques contributes in the feature selection without the influence of expert knowledge;
- ☑ Different contributions of the brain areas and feature types;
- □ Test with different fitness functions and on different datasets;
- Define experimental protocol considering ergonomic issues.

Thank you

Bibliography

- A. Atyabi, M. Luerssen, S. Fitzgibbon, and D. M. Powers, "Evolutionary feature selection and electrode reduction for EEG classification," in 2012 IEEE congress on evolutionary computation. IEEE, 2012, pp. 1–8.
- K. Amarasinghe, P. Sivils, and M. Manic, "EEG feature selection for thought driven robots using evolutionary algorithms," in 2016 9th International Conference on Human System Interactions (HSI). IEEE, 2016, pp. 355–361.
- K. Amarasinghe, P. Sivils, and M. Manic, "EEG feature selection for thought driven robots using evolutionary algorithms," in 2016 9th International Conference on Human System Interactions (HSI). IEEE, 2016, pp. 355–361.
- A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, "PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals," circulation, vol. 101, no. 23, 2000, pp. e215–e220.
- G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, "BCl2000: a general-purpose brain-computer interface (BCI) system," IEEE Transactions on biomedical engineering, vol. 51, no. 6, 2004, pp. 1034–1043.
- 6 S.-H. Oh, Y.-R. Lee, and H.-N. Kim, "A novel EEG feature extraction method using Hjorth parameter," International Journal of Electronics and Electrical Engineering, vol. 2, no. 2, 2014, pp. 106–110.
- P. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," IEEE Transactions on audio and electroacoustics, vol. 15, no. 2, 1967, pp. 70–73.
- 🔞 M. X. Cohen, "A better way to define and describe Morlet wavelets for time-frequency analysis," NeuroImage, vol. 199, 2019, pp. 81–86.
- 9 S. M. Vieira, L. F. Mendonc, a, G. J. Farinha, and J. M. Sousa, "Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients," Applied Soft Computing, vol. 13, no. 8, 2013, pp. 3494–3504.

The End