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Introduction
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Figure 1: System identification configuration

@ System identification: estimate a model (unknown system)
based on the available and observed data (usually input and
output of the system), using an adaptive filter
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Introduction

@ Multidimensional system identification:
— modeled using tensors
— multilinearity is defined with respect to the impulse responses
composing the complex system (as opposed to the classical
approach, referring to the input-output relation) = multilinear in
parameters system
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Introduction

@ Multidimensional system identification:
— modeled using tensors
— multilinearity is defined with respect to the impulse responses
composing the complex system (as opposed to the classical
approach, referring to the input-output relation) = multilinear in
parameters system

@ Purpose: analyzing and developing adaptive algorithms for
multilinear in parameters systems

@ Possible applications:
— identification of Hammerstein systems
— nonlinear acoustic echo cancellation = multi-party voice
communications (e.g., videoconference solutions)
— source separation
— tensor algebra - big data
— algorithms for machine learning
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e Bilinear Forms
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System Model for Bilinear Forms

@ Signal model: d(n) = y(n) + v(n) = hT(n)X(n)g(n) + v(n)
— d(n) - reference (desired) signal
— output signal y(n) - bilinear form with respect to the impulse

responses

— h, g - unknown system impulse responses of lengths L, M:
h(n) = h(n —1) +wn(n) g(n) =g(n—1) + wg(n)
Wh(n), wg(n): zero-mean WGN

— X(n) = [x1(n) x2(n) ... xXu(n)]-input signal matrix
m=1,2,....M

— v(n): zero-mean WGN
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System Model for Bilinear Forms

@ Signal model: d(n) = y(n) + v(n) = hT(n)X(n)g(n) + v(n)
— d(n) - reference (desired) signal
— output signal y(n) - bilinear form with respect to the impulse

responses

— h, g - unknown system impulse responses of lengths L, M:
h(n) =h(n—1) +wn(n) g(n) = g(n—1) +wg(n)
Wh(n), Wg(n): zero-mean WGN

— X(n) = [x1(n) x2(n) oo Xp(m)] - input signal matrix
m=1,2,....M

— v(n): zero-mean WGN

e Equivalent model: d(n) =7 (n)x(n) + v(n)
— f(n) = g(n) ® h(n) — Kronecker product of length ML
= X(n) = vee[X(n)] = X[ (n) xJ(n) ... x[(m]
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System Model for Bilinear Forms

e Estimated output signal: ¥(n) = h(n— 1)X(n)g(n — 1)
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System Model for Bilinear Forms

e Estimated output signal: ¥(n) = h(n— 1)X(n)g(n — 1)
@ Error signal:

e(n) = d(n) - y(n)

=d(n) =1 (n— 1)xX(n)
= d(n) — hT(n - 1)Xg(n) « eg(n)
= d(n) — g7 (n—1)x;(n) < ex(n)
= [g(n) @ h(n)]” X(n) + v(n) - [@(n -1)@h(n-1) TX(n)
= h'(n)xg(n) + v(n) — h7(n - 1)x4(n)
= g7 (mMxn(n) + v(n) — g’ (n— 1)x(n)

Xg(n) = [g(n) @ 1,]"X(n) xn(n) = [lv @ h(n)]"X(n)

xg(n) = [@(n—1) @1]"x(n)  x3(n) = [Ilm @ h(n—1)]"x(n)
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Optimized LMS Algorithm for Bilinear Forms

The desired signal can be written in two equivalent forms:
e d(n)=g"(Mxn(n)  +a"(nNxz(n) — g’ (N)x;(n)
=g’ (Mx(n)  + vg(n)
Vg(n): additional noise term, introduced by the system g

o d(n)=h"(n)xg(n)  +h"(n)xg(n)—h'(n)xg(n)  +v(n)

— hT(n)xa(n) + Vh(n) + v(n)

vh(n): additional noise term, introduced by the system h
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Optimized LMS Algorithm for Bilinear Forms

The desired signal can be written in two equivalent forms:
o d(n) =g (Mxa(n)  +a"(Mx5(n) — g" (M)x5(n)
=g’ (mxz(n)  + vg(n)
Vg(n): additional noise term, introduced by the system g

o d(n) =hT(Mxg(n) +hT(Mxg(n) — hT(n)xg(n) -+ v(n)
—hT(n)xg(n) -+ Vh(n) +v(n)

vh(n): additional noise term, introduced by the system h

In the context of LMS:

~

a(n) = a(n—1) + pigXg(me(n)  h(n) = h(n—1) + upxg(n)e(n)
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@ After computations =- optimal step-size values /g ,, 15 ,

. . xz(n)e(n)
g(n)=g(n—1)+ ho_
MoZE{|[h(n—1)[[2}
y 1
{1 N +of+a%y (n) ]
+oZE{ [IA(n-1)[12 } | mg(n—1)+Mo3 |
~ ~ xg(n)e(n)
h(n)=h(n—1)+ 9
LogE{l|g(n —1)[[2}
y 1
[1 N +o2+a?, (n) }
+02E{|[@(n—1)I12 } [ mn(n—1)+Lo3, |

— ¢g(n) = g(n) —g(n), cn(n)=h(n)— ﬂ(n): a posteriori
misalignments
— mg(n) = E{[leg(n)[[*}, mn(n) =E{[len(n)|[*}
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Scaling Ambiguity

e f(n) =g(n)®h(n) =[ng(n)]® [%h(n)] n € R* - scaling factor

[th(m] " X(n) (re(m)] = hT(m)X(n)g(n)
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Scaling Ambiguity

e f(n) =g(n)®h(n) =[ng(n)]® [%h(n)] n € R* - scaling factor
h(n) — h(n)

[1h(n)] " X(n) g(m)] = W (X (m)a(m) = () — ng(n)
f(n) — f(n)
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Scaling Ambiguity

e f(n) =g(n)®h(n) =[ng(n)]® [%h(n)] n € R* - scaling factor
. h(n) — h(n)
1h(n)| X(n) [rg(m)] = W (MX(n)g(n) = §(n) — ng(n)
f(n) — f(n)

Normalized projection misalignment (NPM):
[Morgan et al., IEEE Signal Processing Letters, July 1998]

P 2
NPMh(n), h(n)] = 1 — | D)
[h(n), h(n) [|h(n)|||h(n)||

2
S 1 _ | _aTman)
NPM[g(n),g(n)] = 1 [W]

A\

Normalized misalignment (NM):

NMIf(n), 1(n)] = [[f(n) — F(n) |12/ [[f(n)]?
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Simulation Setup

@ Input signals xn(n),m=1,2,..., M - independent WGN,
respectively AR(1) generated by filtering a white Gaussian noise
through a first-order system 1/ (1 — 0.8z~ 1)

@ h, g - Gaussian, randomly generated, of lengths L =64, M =8
@ v(n) - independent WGN of variance o2 = 0.01
@ Assumptions: —

%

@ Performance measure - NM for the global filter

Compared algorithms
@ OLMS-BF and NLMS-BF [c. Paleologu et al., "Adaptive filtering for the

identification of bilinear forms,” Digital Signal Process., Apr. 2018]

@ OLMS-BF and regular JO-NLMS [s. Ciochinz et al., "An optimized NLMS

algorithm for system identification,” Signal Process., 2016]
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Figure 2: Normalized misalignment for the OLMS-BF and NLMS-BF algorithms, with
white Gaussian input signals, ML = 512, SNR = 20 dB.
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Figure 3: Normalized misalignment for the OLMS-BF and NLMS-BF algorithms, with
AR(1) input signals, ML = 512, SNR = 20 dB.
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Figure 4: Normalized misalignment for the OLMS-BF and regular JO-NLMS
algorithms, with white Gaussian input signals, ML = 512, SNR = 20 dB.
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Figure 5: Normalized misalignment for the OLMS-BF and regular JO-NLMS
algorithms, with AR(1) input signals, ML = 512, SNR = 20 dB.
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Kalman Filter for Bilinear Forms (KF-BF)

@ A posteriori misalignments:

en() = ~h(n) ~ (n) cg(n) = ng(n) - §(n)
— with correlation matrices:
R, (1) = Elen(n)ep (n)] Re, (1) = E[cg(n)cg (n)]

@ A priori misalignments:
on, (1) = —mm h(n—1) cq.(n) = ng(n) — §(n—1)
=cMHU+;WMm
— with correlation matrices:

mezE&mmdvﬂ mgm:E%um%(ﬂ
Rcha(n) =Re,(n—1)+ aWhIL cha(n) = ch(n —-1)+ anIM

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020 18/108



@ KF-BF update relations:
h(n) = h(n— 1) + kn(n)e(n) g(n) = g(n—1) + kg(n)e(n)
kn(n), kg(n): Kalman gain vectors
@ Minimizing (1/L)tr [Re, (n)], (1/M)tr [Re,(n)] yields:

B - R¢ a(n)xA(n)
Kn(1) = T3 Rer. (Mg o7 Ka(1) = ST Reg, (g )7
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@ KF-BF update relations:

h(n) = h(n—1) + kn(n)e(n) g(n) =g(n—1) + kg(n)e(n)
kn(n), kg(n): Kalman gain vectors
@ Minimizing (1/L)tr [Re, (n)], (1/M)tr [Re,(n)] yields:

Rep, ()% (n) R, (%(0)
Kn(1) = T3 Rer. (Mg o7 Ka(1) = ST Reg, (g )7

Simplifying assumptions

@ after convergence was reached:

Re,, (n) = ac (Ml Re,, (n) ~ agga(n)lM

° mlsallgnments of the individual coefficients: uncorrelated
= we can approximate:

I — kn(n)XZ (n) ~ [ - 1kT(n)x§(n)} I
I — kg(mxI(n) ~ [1 - vk (Mxe(n)] Iy

«
=3

= Simplified Kalman Filter for bilinear forms (SKF - BF)
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@ kn(n),Kkg(n) - Simplified Kalman gain vectors:

oFg(m)+of]
kg(n) = X’ﬁ(n) [X%(n)xa(n) + :gga(n):|

og (M+ab |

1
kn(n) = xg(n) ["aT (mxg(m) + ()]

g,
Cha
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@ kn(n),Kkg(n) - Simplified Kalman gain vectors:

kg(n) = x3(n) [XET(”)XH(”)+ )

og (n)+of

1
() = Xg(m) T (gl + "

@ SKF-BF becomes identical to OLMS-BF if:
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@ kn(n),Kkg(n) - Simplified Kalman gain vectors:

kg(”)zxﬂ(”)[xﬁT(n)Xﬁ(nH .

og (n)+of

1
() = Xg(m) T (gl + "

@ SKF-BF becomes identical to OLMS-BF if:
Practical Considerations

@ The parameters related to uncertainties in h, g: aﬁvh, o

2 .
Wg*

— small = good misalignment, poor tracking
— large (i.e., high uncertainty in the systems) = good tracking, high
misalignment
@ In practice — some a priori information may be available (e.g., we
may consider g - time-invariant = o5 = 0)
@ By applying the /> norm on the state equation:

55,(n) = 1|[A(n) — A(n - 1)”2
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— KF-BF, WGN inputs

- Regular KF, WGN inputs
KF-BF, AR(1) inputs

= = Regular KF, AR(1) inputs

Normalized misalignment (dB)

Iterations x10%

Figure 6: Normalized misalignment of the KF-BF and regular KF for different types of
input signals. ML = 512, 07 = 0.01, 05, = 0%, =05 =107, and e = 107°.
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= SKF-BF, WGN inputs
Regular SKF, WGN inputs
SKF-BF, AR(1) inputs
— — Regular SKF, AR(1) inputs

Normalized misalignment (dB)
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Figure 7: Normalized misalignment of the SKF-BF and regular SKF for different types
of input signals. Other conditions are the same as in Fig. 6.
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— SKF-BF, WGN inputs
Regular SKF, WGN inputs
SKF-BF, AR(1) inputs
= = Regular SKF, AR(1) inputs

Normalized misalignment (dB)
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Figure 8: Normalized misalignment of the SKF-BF and regular SKF for different types
of input signals, using the recursive estimates vah (n) and 52,(n), respectively.
ML = 512, 05 = 0.01, 0%, = 0,and e = 107°.
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Improved Proportionate APA for the Identification of

Sparse Bilinear forms

Motivation:

@ Echo cancellation - a particular type of system identification
problem - estimate a model (echo path) using the available and
observed data (usually input and output of the system)

@ The echo paths are sparse in nature: only a few impulse
response components have a significant magnitude, while the rest
are zero or small

@ Proportionate algorithms: adjust the adaptation step-size in
proportion to the magnitude of the estimated filter coefficient

@ Affine Projection Algorithm (APA): frequently used in echo
cancellation, due to its fast convergence

Target: A proportionate APA for the identification of sparse bilinear
forms
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Improved Proportionate APA for Sparse Bilinear Forms

@ NLMS-BF [C. Paleclogu et al., Digital Signal Processing, Apr. 2018]:
h(n) = h(n— 1) + 280 gy _ Gn_ 1)+ @00

<L (nxg(n)+o; 9 X ()% (1) +0g
— 0 < af < 2,0 < ag < 2: normalized step-size parameters
— o5 > 0, 05 > 0: regularization parameters
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Improved Proportionate APA for Sparse Bilinear Forms

@ NLMS-BF [C. Paleclogu et al., Digital Signal Processing, Apr. 2018]:
h(n) = h(n— 1)+ S90S gy _ g 1) 4 8550

<L (nxg(n)+o; 9 X ()% (1) +0g
— 0 < af < 2,0 < ag < 2: normalized step-size parameters
— o5 > 0, 05 > 0: regularization parameters

@ APA-BF can be seen as a generalization of NLMS-BF
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Improved Proportionate APA for Sparse Bilinear Forms

@ NLMS-BF [C. Paleclogu et al., Digital Signal Processing, Apr. 2018]:
h(n) = h(n— 1) + 22080 g(n) = (n - 1) + )

X (n)Xg(n)+5; T (n)Xg(n)+55
— 0 < af < 2,0 < ag < 2: normalized step-size parameters
— o5 > 0, 05 > 0: regularization parameters

@ APA-BF can be seen as a generalization of NLMS-BF

o Notations: — X5(n) = [ X5(n) Xg(n—1) -+ Xg(t—P+1) ]
= Xa(n) = [ X(n) Xa(n—1) -+ X (t—P+1)]
—d(n)=[dn) dn-1) - dit-pP+1)]

— P: projection order

@ Error signals = error vectors: eg(n) = d(n) — )~(§T(n)ﬁ(n -1)

eq(n) = d(n) — XI(n)g(n—1)
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Improved Proportionate NLMS Algorithm for Bilinear

Forms (IPNLMS-BF)

@ IPNLMS-BF: [C. Paleologu et al., Proc. IEEE TSP, 2018]

~

h(n)=h(n—1)+ [aﬂQﬁ(n - 1)3?@(”)6“(”)} < :

g n)Q;(n—1)Xg(n)+0
™ _ A O-(rn _ 1\v- 1
gn=g(n—1)+ [agQg(n 1)xh(n)eﬁ(n)} KT (0 (715 (1) 155 where
Qs(n—1) =diag | G;(n—1) - G (1) |-size LxL
Qz(n—1)=diag| gg1(n—1) --- qggmu(n—1) ] -size M x M
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Improved Proportionate NLMS Algorithm for Bilinear

Forms (IPNLMS-BF)

@ IPNLMS-BF: [C. Paleologu et al., Proc. IEEE TSP, 2018]

h(n) = h(n - 1) + [a5Q5(n — 1)Xg(n)eg(n)] &7 T
g

g(n)=g(n—1)+ [aaQa(n - 1)’iﬁ(n)eﬁ(n)} Ty - 11)xh(n)+gA where
Qs(n—1) =diag | G;(n—1) - G (1) |-size LxL
Qz(n—1)=diag| gg1(n—1) --- qggmu(n—1) ] -size M x M
— Proportionate factors:
qﬁ/(n—1): ! _KE+(1 +I€A)’iil(n_1)‘, 1<I<L
A O |
Gg.m(n— 1) = 12_,\;5 +(1 +m§)2’ﬁg((:__11))"1, 1<m<M
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Improved Proportionate APA for Bilinear Forms

o IPAPA-BF: o B o
h(n) = h(n— 1) + agQg(n — 1)Xg(n) [ X (MQR(n — 1)Xg(n) + Fle| e

/g\(n) = /g\(n — 1) + CM@Q@(” — 1))~(ﬁ(n) [)N(%—(n)Qg(n _ 1)iﬂ(n) n %IP} —1 eﬁ

— Qp, Qg: matrices containing proportionality factors
— if P=1 = IPNLMS-BF
— if Qp(n—1) =1, Qg(n—1) = Iy = APA-BF
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Improved Proportionate APA for Bilinear Forms

o IPAPA-BF: B B B L
h(n) h(n — 1) + a5 Qp(n — 1)X5(n) [XgT(n)Qﬁ(n - 1)Xg(n) + 5’5'/3} €5
R R ~ ~ ~ ~ 71—
g(n) =g(n—1)+ agQg(n —1)Xz(n) [Xﬁr(n)Qg(n — )X (n) + (5@'/3} eq
— Qp, Qg: matrices containing proportionality factors

—if P=1 = IPNLMS-BF
—ifQg(n—1) =1, Qg(n— 1) = Iy = APA-BF

Experiments - system identification:

@ h, of length L = 512: the first impulse response from G168
Recommendation, padded with zeros [Digital Network Echo Cancellers,
ITU-T Recommendations G.168, 2002]

@ ¢, of length M = 4: computed as g, = 05", m=1,.... M
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Figure 9: Performance of the NLMS-BF and APA-BF in terms of NM. The input

signals are AR(1) processes and ML = 2048.
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Figure 10: Performance of the IPNLMS-BF and IPAPA-BF in terms of NM. The input
signals are AR(1) processes and ML = 2048.
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e APA, a0 = 0.2
- - APA-BF, o = ap= 0.1
—IPAPA - BF, of = o =01

NM (dB)

-35
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x10*

0 0.5 1 15
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Figure 11: Performance of the APA, APA-BF, and IPAPA-BF in terms of NM. The input
signals are white Gaussian noises and ML = 2048.
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-------- IPAPA, a =1

- -~ IPAPA, a =0.2
——1IPAPA - BF, ag = az = 0.1|
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Figure 12: Performance of the IPAPA and IPAPA-BF in terms of NM for different
values of the normalized step-size parameters o, o, and ag. The input signals are

AR(1) processes and ML = 2048.
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e Trilinear Forms
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Short Review on Tensors

@ Tensor: a multidimensional array of data
@ Trilinear forms = we only need third-order tensors:
A € RbixlexLs | of dimension L1 x L x Lg
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Short Review on Tensors

@ Tensor: a multidimensional array of data
@ Trilinear forms = we only need third-order tensors:
A e Rbixk2xLs of dimension Ly x Lo x Lg

@ mode-1 product between tensor A and matrix My € RMxLt:
U=Ax1M, MERM‘XL2XL3,
Um1 by = 2#21 a/1,2,3mm1,1, m = 1,2, soog M1
@ mode-2 product between tensor .4 and matrix My € RM2xL2:
U=Ax, My, U e R Mexls
U moly = 222:1 Al bty Mmyly, M2 = 1,2, ey Mg
@ mode-3 product between tensor A and matrix M3 € RMsxLs:
U=AxzM3, U c RbxlxMs

L,
ul1/2m3 = ZI33:1 al1/2/3mm3/3: mg = 1,2, vy MS
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System Model for Trilinear Forms

@ Signal model:

L L Lg

y(t) = X (1) x1 h{ xahl xghg =" "> " X, (t)h1, hoy gy,
h=1 =1 =1

where X (t) € Rb*Lexls: zero-mean input signals,
(X)/1/2/3 (t) = XI1/2/3(t)) lk = 1’27 ey Lku k — 172)37
and h,, k =1,2,3, of lengths L4, Lo, and Lz: impulse responses

he=[ M hee - he, |7, k=123
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System Model for Trilinear Forms

@ Signal model:

L L Lg

y(t) = X (1) x1 h{ xahl xghg =" "> " X, (t)h1, hoy gy,
h=1 =1 =1

where X (t) € Rb*Lexls: zero-mean input signals,
(X)/1/2/3 (t) = X/1/2/3(t)) lk = 1’27 ey Lku k — 172)37
and h,, k =1,2,3, of lengths L4, Lo, and Lz: impulse responses
T
he=[ha he - hg ] . k=123

— output signal y(t): trilinear form with respect to the impulse
responses

— it can be seen as an extension of the bilinear form [Benesty et al.,
IEEE Signal Processing Lett., May 2017]
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@ Equivalent expression: y(t) = vec” () vec [X ()] = hTx(t)

VCC(%):h3®h2®h1 £ h
vec [X ()] = x(1)
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@ Equivalent expression: y(f) = vec” (#) vec [X ()] = h"x(t)

VCC(?‘[):h3®h2®h1 —h
vee [X(1)] = x(t)

@ Goal: estimation of the global impulse response h
~ ~ 2
e Cost function: J <h) — E[e¥(t)] =E { [d(r) . th(t)] }

— 04 = E [d?(t)]: reference signal’s variance

— p = E [x(t)d(t)]: cross-correlation vector between the input and
reference signals

— R = E [x(t)x"(t)]: input signal’s covariance matrix
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@ Equivalent expression: y(f) = vec” (#) vec [X ()] = h"x(t)

VCC(?‘[):h3®h2®h1 —h
vee [X(1)] = x(t)

@ Goal: estimation of the global impulse response h
~ ~ 2
e Cost function: J (h) — E[e¥(t)] =E { [d(r) . th(t)] }

— 04 = E [d?(t)]: reference signal’s variance

— p = E [x(t)d(t)]: cross-correlation vector between the input and
reference signals

— R = E [x(t)x"(t)]: input signal’s covariance matrix

o After computations: J (ﬁ) — 02— 2h"p+h"Rh

@ Minimize J (ﬁ) = conventional Wiener filter: ﬁw =R 'p
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lterative Wiener Filter for Trilinear Forms

@ Problems of the conventional Wiener filter:
— R: size LyLyL3 x LiLoL3 = huge amount of data for its estimation
— R could be very ill-conditioned, due to its huge size
— the solution hyw could be very inaccurate in practice
@ ldea: h (L L.L3 coefficients) is obtained through a combination of
hy, k =1,2,3, with Ly, Lo, and L3 coefficients
— L1 + Ly + L3 different elements are enough to form h, not L{L,L3
@ Solution: an iterative version of the Wiener filter
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lterative Wiener Filter for Trilinear Forms

@ Problems of the conventional Wiener filter:
— R: size LyLyL3 x LiLoL3 = huge amount of data for its estimation
— R could be very ill-conditioned, due to its huge size
— the solution hyw could be very inaccurate in practice
@ ldea: h (L L.L3 coefficients) is obtained through a combination of
hy, k =1,2,3, with Ly, Lo, and L3 coefficients
— L1 + Ly + L3 different elements are enough to form h, not L{L,L3
_@ Solution: an iterative version of the Wiener filter
—h can be decomposed as:

h 3®ﬁz®ﬁ1,

Il
A~ N /2D

hs @ hy @1, ) hy

)
hs 1, ®ﬁ1>ﬁz
- )

|L3 ®ﬁg ®ﬁ1 ﬁ3
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lterative Wiener Filter for Trilinear Forms

@ Problems of the conventional Wiener filter:
— R: size LyLyL3 x LiLoL3 = huge amount of data for its estimation
— R could be very ill-conditioned, due to its huge size
— the solution hyw could be very inaccurate in practice
@ ldea: h (L L.L3 coefficients) is obtained through a combination of
hy, k =1,2,3, with Ly, Lo, and L3 coefficients
— L1 + Ly + L3 different elements are enough to form h, not L{L,L3
_@ Solution: an iterative version of the Wiener filter

—h can be decomposed as:  _ in a corresponding manner, J (ﬁ) can
h=hs®hy®hy, be written as:
- (Eg®ﬁz®|L1)ﬁ1 % (51) 02— 2hIp; + hTR;h;
= (hs @1, @ hy ) b, Ji i, (12) = 78 — 2h]p, + hIRoh,
- (IL3 ®hy® ﬁ1> hs % b (ﬁg) = 02 — 2h]ps + h]R3h;
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lterative Wiener Filter for Trilinear Forms

where SN T
pi=(Rs@h 21, p,

TR(E3®EZ®|L1>,
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lterative Wiener Filter for Trilinear Forms

where SN T
pi=(Rs@h 21, p,

TR(E3®EZ®|L1>,

o Initialize:
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@ Compute: p(o) < ®IL1>Tp
(h(°)®h°)®l )TR(E(°)®E(°)®I )
o Minimize J; - (ﬁﬁ”) =02 2(h“)) p{® + (h“’) R("p{"
RO (D)
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@ Compute: p < ®IL1>Tp
( (°)®h°)®l )TR( h? «h 21, )
o Minimize J; - (ﬁﬁ”) — 02— 2(h“)) p{® + (h‘”) R(Oh{)
~ R )_ (R(m) "p
@ Compute: pg ( h{ @I ®h ”) p
)= (A 21, h(”) R(h{” @1, @ h{")
o Minimize J; ¢ (h") = o2 - (h“)) s + (h(‘)) R{Al"
SR (R )
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e Compute: pg) = (I,_3 ® ﬁg) ® ﬁg”) Tp
R{" = (IL3 ®hl) @ ﬁﬁ”) "R (IL3 ®hi) ﬁﬁ”)
o Minimize J; ¢ (hS") = o2 — 2 (R{") "ol (h") "R(AL
RO~ () el
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@ Compute: g ( ®h(1) ®h )>Tp
RS = (I, @ h(”) R(l ST
@ Minimize J; s (ﬁg ) (hm) pg) (ﬁg))TRg)ﬁg)
) (1)
o At lteratlon n: ( )
(R(n 1) > 1 (n 1) ’ ) _ (’ﬁénq) ®|L2 ®ﬁg,7))7'p’

o (o hs">> R (Rt R,

h()— (R(")> . p — ( o h ®ggn))Tp’

RS = (I, o h" @ ﬁﬁ”)) R (1, ®h{” 2 h(”),

R~ () el
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@ Compute: g ( ®h(1) ®h )>Tp
RS = (I, @ h(”) R (l ST
@ Minimize J; s (ﬁg ) (hm) pg) (ﬁg))TRg)ﬁg)
) (1)
o At lteratlon n: ( )
(R(n 1) > 1 (n 1) ’ ): (’ﬁénq) ®|L2 ®ﬁg,7))7'p’
o R LG Y]
h()— (R(")> . p — ( o h ®ggn))Tp’
RS = (I, o h" @ ﬁﬁ”)) R (1, ®h{” 2 h(”),
RO~ (R) 8

o Finally: h» = h{"”  h{" & h!{")
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Figure 13: Impulse responses used in simulations: (a) hy of length Ly = 64 (pigital
, (b) hy of length L, = 8 (randomly
) L3)7 (d)

Network Echo Cancellers, ITU-T Recommendations G.168, 2002.]
generated), (c) hg of length L3 = (evaluated as hg, = 0.53*1, h=1,
global impulse response h = h; ® h, ® hy of length L = LyL,L3 = 2048.
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@ N data samples available to estimate R and p

R= 3 Ty x(Ox7 (1) P =& iy x(Hd(1)

40

30

20

20 F

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
N

Figure 14: Normalized misalignment of the conventional Wiener filter as a function of
N (available data samples to estimate the statistics), for the identification of h.
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10 F -—— Conv_entior_!al Wigner filter, N = 5000
lterative Wiener filter, N = 500
lterative Wiener filter, N = 2500
Iterative Wiener filter, N = 5000

NM (dB)
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Figure 15: Normalized misalignment of the conventional and iterative Wiener filters,
for different values of N (available data samples to estimate the statistics), for the
identification of h.
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Tz N = 2500
E N = 5000
=z 50 ! ! ! ! ! ! 1 1 1 i
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Iterations
o (b)
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e N = 2500
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Iterations
(c)
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e N = 2500
E N = 5000
% 50 ¥ .
2 4 6 8 10 12 14 16 18 20
Iterations

Figure 16: Normalized projection misalignment of the iterative Wiener filter, for
different values of N (available data samples to estimate the statistics), for the
identification of hy, ho, hs
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lterative Wiener Filter for Trilinear Forms

@ The proposed approach offers:

o Lower computational complexity: a high-dimension system
identification problem of size L;L,L3 is translated in low-dimension
problems of sizes Ly, Lo, and L3, tensorized together

o A more accurate solution, especially when a small amount of
data is available to estimate the statistics = advantage in case of
incomplete data sets, under-modeling cases, and very
ill-conditioned problems
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lterative Wiener Filter for Trilinear Forms

@ The proposed approach offers:
o Lower computational complexity: a high-dimension system
identification problem of size L;L,L3 is translated in low-dimension
problems of sizes Ly, Lo, and L3, tensorized together

o A more accurate solution, especially when a small amount of
data is available to estimate the statistics = advantage in case of
incomplete data sets, under-modeling cases, and very
ill-conditioned problems

@ Limitations of the Wiener filter:

e matrix inversion operation

e correlation matrix estimation

e unsuitable in real-world scenarios (e.g., nonstationary
environments and/or requiring real-time processing)

@ Solution: LMS-based algorithms for the identification of trilinear
forms

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020 44/108



Least-Mean-Square Algorithm for Trilinear Forms

(LMS-TF)

@ A priori error signal can be written (similar to BF) as:

e(t) = d(t) — y(t) = d(t) — h(t — 1)Tx(t)
= d(t)—h{(t—1)xg 5 () < e (1)
= d(t) = hJ(t—1)x; () < e (1)
= d(t) = h(t—1)x; . () < ;5 (D)

where
X o (1) = [ﬁs(t— Heh(t—1)® |L1] x(1)
Xg, i, (1) = [Ra(t = 1) @ 1, @ By (t = 1) x(1)

X, (D) = [y @ Ba(t = 1) @ Ry (1= 1) x(1)
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Least-Mean-Square Algorithm for Trilinear Forms

(LMS-TF)

@ LMS-TF updates:

= g, > 0, g, > 0, I, > 0: step-size parameters
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Least-Mean-Square Algorithm for Trilinear Forms

(LMS-TF)

@ LMS-TF updates:

= g, > 0, g, > 0, I, > 0: step-size parameters

@ LMS-TF uses three short filters, of lengths L4, L,, L, instead of a
long filter, of length Ly L>L3 = lower complexity

@ Faster convergence rate expected

@ For non-stationary signals: it may be more appropriate to use
time-dependent step-sizes 1 (1), “ﬁz( 1), “ﬁs( t)
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Normalized LMS Algorithm for Trilinear Forms

(NLMS-TF)
@ A posteriori error signals:
gy (1) = A(0) = (x5, (1)
him, (1) = A1) = hI (5 5 (1)
hi, (1) = A1)~ hI (X5 5. (1)
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Normalized LMS Algorithm for Trilinear Forms

(NLMS-TF)

@ A posteriori error signals:
e, () = d(t) = ] (x5 (D)
e, () = d(t) = hI (t)xg & (1)
e (D) = d(t) — I (x5 & (1)
@ By cancelling the a posteriori error S|gnals = NLMS-TF:
05, Xfi,h, (1) €y, (1)
xﬁsz(t)xﬁzﬁs(t) + 05,
5, %5, (D)€, (1)

ho(t) = ho(t — 1) + -
xﬂ1ﬂ3(t)xﬁ1ﬁs(t) + 552

~ ~ o Xq. 5. (Des 5 (1)
h3(t):h3(t—1)—|— hs " hihy 1hp
XIAz(t)XE1ﬁz(t)+5ﬁs

hy(f) =hy(t— 1)+
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Figure 17: Normalized misalignment of the LMS-TF algorithm using different
values of the step-size parameters.
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T
LMS-TF, pi = i, = pig;, =5 x 107
LMS-TF, g = pi;, = Hy =2 % 104 |
Regular LMS, i = 10

NM (dB)

0.8 1 1.2 1.4 1.6 1.8 2

Iterations x10°
Figure 18: Normalized misalignment of the LMS-TF and regular LMS
algorithms.
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Figure 19: Normalized misalignment of the NLMS-TF algorithm using

Iterations

different values of the step-size parameters.
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Figure 20: Normalized misalignment of the NLMS-TF and regular NLMS
algorithms.
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Figure 21: Normalized misalignment of the NLMS-TF and regular NLMS
algorithms. The impulse response h, changes in the middle of the

experiment.
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e Multilinear Forms
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lterative Wiener Filter for Multilinear Forms

@ Idea: f (with L1Ly x --- x Ly coefficients) is obtained through a
combination of hy, k =1,2,... N, with Ly, Lo, ..., Ly coefficients
— Ly + Ly + - -- + Ly different elements are enough to form f

@ Solution: an iterative version of the Wiener filter
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lterative Wiener Filter for Multilinear Forms

@ Idea: f (with L1Ly x --- x Ly coefficients) is obtained through a
combination of hy, k =1,2,... N, with Ly, Lo, ..., Ly coefficients
— Ly + Ly + - -- + Ly different elements are enough to form f

@ Solution: an iterative version of the Wiener filter
— It can be verified that:

f=hyohy_1®---@hy
:(hN®hN71®"'®IL1)h1
:(hN®hN71®"‘®h3®le®h1)h2

=(hyohy1® - @l,oh,_1®---@hy)h;

= (I, ®@hy1®---@hy) hy
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lterative Wiener Filter for Multilinear Forms

@ Consequently, J <f) can be written in N equivalent forms
@ When all coefficients except ﬁ,- are fixed:
R) _ 2 opT RTRR. i
JE1 752’“.751_1’&“7”.751\’ (h,’) =0gq— 2h,' P + h,- Rh;,, i=12,....N
where
PR ~ \T
—pi=(Awohy 1@ @lyoh, 1o ah) p
o~ - ~ N\T
—Ri= (hN®hN—1 @@l ®hy_4 ®---®h1> R

X <EN®/HN71 ®"'®|L,-®/HL,'71®"'®E1>

eh; =R 'p,i=12..N
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lterative Wiener Filter for Multilinear Forms

— Initialization: a set of initial values ﬁ,(o), i=1,2,...,N
— Computations:

p” = (AP @hly), - ol 1y, ) "p
RO = (A @A @ o hY) ®TL1>T R
x (A 2 hQ @ @hf 2l
— Cost function:
b () =52 (506 1 (59) 0 ()

— After minimization of the cost function:

R = (RP) P
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— Computations:

-
pg):<h(°)®h() ®---2h® 1, oh{") p

.
RY) = (A @AY, @ o h{ @ 1,h(") R
x (A @B @ @ ®IL2h(”)
— Cost function:

i (L) =2 () o0+ () R0 ()

— After minimization of the cost function:
~(1 M
R = (RE) B!

— Similarly, we compute all ﬁ,m, i=1,2,....N
— Continuing up to iteration n, we get the estimates of the N vectors
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Simulation Setup

@ input signals - independent AR(1), obtained by filtering WGN
signals through a first-order system 1/ (1 — 0.9z~ 1)

@ w(n) - AWGN, with variance 02, = 0.01
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Simulation Setup

@ input signals - independent AR(1), obtained by filtering WGN
signals through a first-order system 1/ (1 — 0.9z~ 1)

@ w(n) - AWGN, with variance 02, = 0.01

@ Performance measures:

— Normalized projection misalignment (NPM) [Morgan et al., IEEE
Signal Processing Letters, July 1998]:

~

NPMI R =1 |- 15 1N
[hi, b =1 - [|h,-(n)||ﬁ,-||] 2= Tocpeacs

— Normalized misalignment (NM):

-~ _§|I12
NMIf, 1] = Lo
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Figure 22: Impulse responses used in simulations: (a) hy of 0 1000 2000 3000 4000 5000 6000 7000 8000
length Ly = 32 [Digital Network Echo Cancellers, ITU-T Samples
Recommendations G.168, 2002.], (b) hy of length L, = 8 . X
(randomly generated), (c) hg of length L = 4 (evaluated as E'QUfﬁ 23: Ehe glzbal 'T‘PU|Sfe| respt?rzse Ll
h31,3 = 0.5’3*1, I3 =1,2,...,L3),(d) hg of length Ly = 4, =hys ® hg ® h, ® hy,oflength L = LyLoL3L4 = 8192.
(e) hs of length Ls = 4, and (f) hg of length Lg = 4 (randomly
generated).
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Figure 24: Normalized misalignment of the iterative Wiener filter, for different
values of M (available data samples to estimate the statistics), for the
identification of the global impulse response from Fig. 23. The input signals

are of type AR(1).
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Figure 25: Normalized projection misalignment of the iterative Wiener filter,
for different values of M (available data samples to estimate the statistics), for
the identification of the individual impulse responses from Fig. 22. The input
signals are of type AR(1).
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Figure 26: Impulse responses used in simulations:
(a) hy of length Ly = 32 [Digital Network Echo
Cancellers, ITU-T Recommendations G.168,
2002.], (b) hy of length L, = 8 (randomly
generated), (c) hg of length L3 = 4 (evaluated as
hy = 0581 I3 =1,2,...,Lg), (d) hy of
length L4 = 4, (e) hs of length Ls = 4, and (f) hg
of length Lg = 4 (randomly generated).
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Figure 27: The global impulse response
h =hg ® hs ® hy ® hg ® hy ® hy, of length
L= Lilylglylslg = 16384.

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020

62/108



60

20 -

NM (dB)

-20 5

-40 +

=== =SSSSSSESSSSSSESESSSSSSSSSESS:SS

Iterative Wiener filter, M = 1000

= = = Conventional Wiener filter, M = 1000
Iterative Wiener filter, M = 2500

= = = Conventional Wiener filter, M = 2500
Iterative Wiener filter, M = 5000
Conventional Wiener filter, M = 5000
Iterative Wiener filter, M = 10000

— — — Conventional Wiener filter, M = 10000

-60

4 5 6 7 8
Iterations

Figure 28: Normalized misalignment of the iterative Wiener filter, for different

values of M (available data samples to estimate the statistics), for the

identification of the global impulse response from Fig. 27. The input signals

are of type AR(1).
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Figure 29: Normalized projection misalignment of the iterative Wiener filter,
for different values of M (available data samples to estimate the statistics), for
the identification of the individual impulse responses from Fig. 26. The input
signals are of type AR(1).
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LMS algorithm for the identification of multilinear forms

— It can be verified that

i (D) = Ehhs i (D = = €, i, (D
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LMS algorithm for the identification of multilinear forms

— It can be verified that

i (D) = Ehhs i (D = = €, i, (D

@ LMS-MF updates:

>)
—~~

ha(t—1) + 15, Xi 0, (D hhs. iy (1)

ho(t — 1) + 115, % s (D8 sy (D)

>)

)
2(1)

hy(t) =hpy(t—1)+ Mﬁ/\/xmﬁz---ﬁNq (t)eﬁﬁz---ﬁ/\/q (1)

— My, > 0, i=1,2,...,N: step-size parameters
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NLMS-MF

@ For non-stationary signals: it may be more appropriate to use
time-dependent step-sizes “R-(t)
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NLMS-MF

@ For non-stationary signals: it may be more appropriate to use
time-dependent step-sizes “R-(t)

@ A posteriori error signals:
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NLMS-MF

@ By cancelling the a posteriori error signals = NLMS-MF:

B ot 1) o Koy D8Rk, R, (D)
1(t) = hq(t - )+5A T xl (%~ - (D
h; 5253.‘.HN hohs...hy

n n aﬁNxEﬁz---ﬁNq(t)eﬁﬁz---ﬁNq (t)

. T SO
5hN + Xﬁ1ﬁg...ﬂN_1 (t)xh1h2~~-hN—1 (1)
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Simulation Setup

@ MISO system of order N = 4

@ h;, /=1,2,3,4: randomly generated (with Gaussian distribution)

() L1 :32,L2:8,L3:4,L4:2

@ input signals - independent AR(1), obtained by filtering WGN
signals through a first-order system 1/ (1 — 0.8z~ 1)

w(t) - AWGN, with variance o2, = 0.01
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Simulation Setup

MISO system of order N = 4

h, I =1,2,3,4: randomly generated (with Gaussian distribution)
L =32,L, =8, L3=4L,=2

input signals - independent AR(1), obtained by filtering WGN
signals through a first-order system 1/ (1 — 0.8z~ 1)

@ w(t) - AWGN, with variance o2, = 0.01

@ Performance measure: Normalized misalignment (NM)

NM[t.](dB) = 20 1og;o [ U7iF ]
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Figure 30: Normalized misalignment of the LMS-MF and LMS algorithms.
The inputs are AR(1) processes, LiLpL3L4 = 2048 and o2, = 0.01.
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NLMS-MF
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Figure 31: Normalized misalignment of the NLMS-MF and NLMS algorithms.
The inputs are AR(1) processes, LiLpL3L4 = 2048 and o2, = 0.01.
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e Nearest Kronecker Product Decomposition and Low-Rank
Approximation

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020 71/108



Nearest Kronecker Product Decomposition and

Low-Rank Approximation

@ Motivation:

e System identification is very difficult in case of long length impulse
responses (slow convergence, high complexity, low accuracy of the
solution)

e Bilinear and trilinear forms are only applicable to perfectly
separable systems

e Many echo paths are sparse in nature = low-rank systems
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Nearest Kronecker Product Decomposition and

Low-Rank Approximation

@ Motivation:

e System identification is very difficult in case of long length impulse
responses (slow convergence, high complexity, low accuracy of the
solution)

e Bilinear and trilinear forms are only applicable to perfectly
separable systems

e Many echo paths are sparse in nature = low-rank systems

@ ldea: decompose such high-dimension system identification
problems into low-dimension problems combined together
@ Solution:

o Nearest Kronecker product decomposition
e Low-rank approximation, to decrease computational complexity
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Kalman filter based on the NKP decomposition

@ h: unknown system of length L = L1L,, L1 > Lo

® Reshape hintoan Ly x Ly matrixx H=[ sy s ... s, |
—s;, 1=1,2,..., Lo: short impulse responses of length Ly each
@ Approximate h by h, ® hq, where hy: length L4, ho: length L,
_ T
@ Performance measure: M (hy, hy) = ”h_"l'ﬁ‘ih‘”z _ M ||:1H:2HF

Minimize M <= find the nearest rank-1 matrix to H: SVD
After computations, the NKP decomposition of h is:

h(t) = S ha,p(t) @ hy (1)
Equivalent forms of the error signal:
ei(t) = d(t) = S py h] ,(t = 1)xep(1) = (l‘)—h1(t—1)x2(t)

ex(t) = d(t) — > ) hzT,p(f— X1 () = d(t) ~ By (t — 1)x,(1)
@ Original system (length L{L,) = 2 shorter filters (lengths PL4, PL5)
= Kalman filter based on the NKP decomposition (KF-NKP)
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@ SVD:H=U;xU] = Y12, oy u],
— Uy, Uo: orthogonal matrices of sizes Ly x Ly, Ly x Lo
— ¥ - Ly x L, rectangular diagonal matrix with nonnegative real
numbers on its main diagonal
— Uy, Uy, With/=1,2,... L5: the columns of Uy, Uz (they are the
left-singular, respectively right-singular vectors of H)
— diagonal entries oy, 1 =1,2,..., L, of X: the singular values of H,
WithU1 > 090> - ZU[_Z ZO
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@ SVD:H=UTU] = Y12, ouq uf,
— Uy, Uo: orthogonal matrices of sizes Ly x Ly, Ly x Lo
— ¥ - Ly x L, rectangular diagonal matrix with nonnegative real
numbers on its main diagonal

— Uy, Uy, With/=1,2,... L5: the columns of Uy, Uz (they are the
left-singular, respectively right-singular vectors of H)
— diagonal entries oy, 1 =1,2,..., L, of X: the singular values of H,

withoy > 00> - >0, >0
@ Optimal approximation of h:  h =hy ® hy
— hy = \/a1uq 1, ha = \/G1Uz1 (U1 1, Uz : the first columns of Uy, Uy)
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@ SVD:H=UTU] = Y12, ouq uf,
— Uy, Uo: orthogonal matrices of sizes Ly x Ly, Ly x Lo
— ¥ - Ly x L, rectangular diagonal matrix with nonnegative real
numbers on its main diagonal

— Uy, Uy, With/=1,2,... L5: the columns of Uy, Uz (they are the
left-singular, respectively right-singular vectors of H)
— diagonal entries oy, 1 =1,2,..., L, of X: the singular values of H,

withoy > 00> - >0, >0
@ Optimal approximation of h:  h =hy ® hy
— hy = \/a1uq 1, ha = \/G1Uz1 (U1 1, Uz : the first columns of Uy, Uy)

@ In the general case: the impulse responses that compose h
(s, 1=1,2,...,Ly) may not be that linearly dependent
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@ SVD:H=UTU] = Y12, ouq uf,
— Uy, Uo: orthogonal matrices of sizes Ly x Ly, Ly x Lo
— ¥ - Ly x L, rectangular diagonal matrix with nonnegative real
numbers on its main diagonal

— Uy, Uy, With/=1,2,... L5: the columns of Uy, Uz (they are the
left-singular, respectively right-singular vectors of H)
— diagonal entries oy, 1 =1,2,..., L, of X: the singular values of H,

WithU1 > 00> - ZU[_Z ZO
@ Optimal approximation of h:  h =hy ® hy
— hy = /o1uq 1, hp = \/o7Uz 1 (Uy 1, Uz 1: the first columns of Uy, Uy)
@ In the general case: the impulse responses that compose h
(s, I=1,2,..., L) may not be that linearly dependent

@ Solution: use the approximation
h~ Y0 1 hyp®hy,=vec(HH]), P <Ly
— hyp, ho o2 impulse responses of lengths Ly and Lo
—>H1 = [ h1’1 h172 h17p ],HQZ [ h2’1 h2’2 hg’p ]Z
matrices of sizes L1 x Pand L, x P
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: _ [In-HiH7]
@ Performance measure: M (H{,Hz) = T

@ Optimal solutions:
Hi=[hyy hip ... hip|=[/o1ui1 /o2Us2...,/0pU;p]
Ho=[hy1 hop ... hop | =[\/01Uz1 /O2Uzp...\/TpUsp]
— Uy p,Upp, p=1,2,..., P:the first P columns of Uy, Uy

@ Optimal approximation of h:

h(P) = 25:1 hyp@hyp= 25:1 opU2p @ Uq p

— the exact decomposition is obtained for P = L,
—ifrank(H) = P < L, (i.e., 0; = 0, for P < i < Lp) = h can be
estimated at least as well as in the conventional approach
— if P is reasonably low as compared to L, = important decrease
in complexity
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System Model

@ Signal model: d(t) = h7(t)x(t) + v(t) = y(t) + v(t)
— d(t): reference (desired) signal
— h(t): unknown system of length L = L{Lp, L1 > Lp
—x(t)=[ x(t) x(t—1) - x(t—L+1) ]T: the most recent
L time samples of the zero-mean input signal x(t)
— V(t): zero-mean additive noise, uncorrelated with x(t)

@ Goal: Estimate h(t) using an adaptive filter ﬁ(t)
@ After computations, the NKP decomposition of h is:

h(t) = 3271 h2p(t) ® hy (1)
— we can group the vectors as:

;

hy(t) = [ h[,(6) hI() - hIs(0) |, of length AL
T T T T

hy(t) = [ hy (1) hyo(t) - h2,P(t)] , of length PL,
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e Error signal: e(t) = d(t) — y(t) = d(t) — hT(t — 1)x(t)
@ NKP decomposition of the estimated filter:
h(t) = 2521 h2,p(t) ® h1,p(t)
— g p(t) @ hy p(1) = [ﬁz,p(l‘) ® 'LJ hyp(t) = [ILz ® E1,;3(1‘)] h2p(t)

. N T not.
— notations: [hgp(t— 1)®IL1} X(t) = Xzp(1)

[l @Rt — )] x(0) "2 x4 ()
— we can group the vectors as:

~ - ~ ~ T
Bi(f)= | AT (1) BT, - hIa() |

- T
Xo(t) = [ X 1(1) xTo(t) - xLp(1) |
~ r —~ ~ T
hy(t) = | hZ,(6) RL.(t) - RIA(1) |

- T
xi(0) = | xI, (0 x]o(8) xT p(1) |
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Kalman filter based on the NKP decomposition

@ Equivalent forms of the error signal:

~T
er(t) = d(t) = Xp_y h] ,(t — 1)xep(t) = d(t) — hy (t = 1)Xx(1)
~T
ex(t) = d(t) — X p_y hl ,(t = 1)x1 p(t) = (1) — hy (t = 1)x4(1)
@ Original system (Iength L1 L2) = 2 shorter filters (lengths PL, PLy)
@ Kalman filter based on the NKP decomposition:

h(f) =h(t— 1) +ki(Der(t)  hy(t) = hy(t — 1) + Ko(t)ex(t)
— ki (1), ko(t): Kalman gain vectors:
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Kalman filter based on the NKP decomposition

@ A posteriori misalignments:
(1) = hy(t) — hy(t), with correlation matrix Ry, (1) = E [y (t)u] (1)]
112(t) = hy(t) — hy(t), with correlation matrix Ry, (t) = E [pa(t)pe] (1)]
@ A priori misalignments:
my(t) = hy (1) —hy (t-1) = p; (t=1)+w1 (1), Rm, (1) = E [my(t)m] (1)
ma(t) = hp(t)—hy(t—1) = pp(t—1)+Wo(t), Rm,(t) = E [ma()m](1)]

@ ltis clear that:
@ The Kalman gain vectors are:
—1
ki(t) = Rm, ()X2(t) [X] (t)Rm, (1)X,(t) + 7] 1
ko(t) = Rm, (1)%1 (1) [X] (£)Rm, (£)X4(£) + oF]
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Computational Complexity

Multiplications

N

Multiplications

[

<)

o

o
T

w

N

x10° (a)
: , , , , . . . .
KF-NKP, L, =25, L, = 20
b= = —KF. L=500 <
I I I I I I I
2 4 6 8 10 12 14 16 18 20
P
108 (b)
. . . . . —
KF-NKP, L, =32, L, = 32
Fl= = —KF. L-1024 1
5 10 15 20 25 30
P

Figure 32: Number of multiplications (per iteration) required by the KF-NKP and KF, as a
function of P. The KF-NKP uses two shorter filters of lengths PL{ and PL, (with P < L), while
the length of the KF is L = L{Lp: (a) L1 = 25, L, = 20, and (b) Ly = L, = 32.
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Estimation of KF-NKP parameters

@ So far, wq(t) and wy(t) were considered zero-mean WGN signals
@ We could consider a more realistic case:

hi(t) =hy(t—1)+wy(t)  hy(t) = hy(t — 1)+ wa(t)
— independent fluctuations of each coefficient:
~ ~ ~ ~ T
wi(t)=[ wio(t) wiq(t) - wyp_1(t) ]

~ ~ ~ ~ T
Wo(t) = [ Woo(t) Woq(t) - Wap,_1(t) ]
@ Thus, we can express:

W1,/(t):h1,/(t)_ﬁ1,/(t_1)7 /2071)"'7PL1 -1
Waj(t) = hy j(t) — hp;(t—1), j=0,1,...,PLo — 1
with )

. - o= k=1

E t t = w,’ k,/1=01,...,PL; — 1
[W‘I,k( )W1,/( ):| {0, k;él s Ny s by ’ 1

E [Woi(tyma (t)] = TR [ =0,1,...,PL, — 1

2,0 2, - 0, ’ I;éj y LI=0U1,..., 2
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Estimation of KF-NKP parameters

@ After computations, we obtain:

~ —~ 2
OE (t—1)+<1—cm[m,,(t—n—m,,(t—z)}
~ —~ 2
" ,,( 1) = ao52, (t—1)+ (1 - az) [hyy(t — 1) — hpy(t - 2)]
—)Oé1—1—1/(/€1PL1), H1>1 a2—1—1/(/<;2PL2), H221
— when oy = ap = 0 (i.e., without temporal averaging):

7 0= #l et -1 Byt 2)
750 (0) = pl [Balt = 1)~ Bt - 2)Hz

° 52, ,(l‘)@%,,zj(t) are then chosen as:

52 (t)=min {52 (1,52 ()}, 1=0,1,...,PLi —1
2

2
52, (t) = min {a

~2 . _
2 (1,520}, j=01,...,PLp 1
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Simulation Setup

Practical Considerations

@ So far, wq(t) and wy(t) were considered zero-mean WGN signals
@ In simulations, we consider a more realistic case, with
independent fluctuations of each coefficient

@ The individual uncertainty parameters are approximated in a
similar way as for KF-BF

First set of experiments - toy example

@ Input signals - independent AR(1), obtained by filtering WGN
signals through a first-order system 1/ (1 — 0.9z~ 1)

@ v(t) - WGN, SNR= 30 dB

Second set of experiments - more realistic scenario

@ Input signals - impulse responses from the G168
Recommendation

@ v(t) - WGN, SNR= 20 dB
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First Set of Experiments
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Figure 33: Impulse responses of length L = 100, which are decomposed using L = L, = 10:
(a) a cluster of 10 samples (alternating the amplitudes 1 and —1) padded with zero, with
rank (H) = 1; and (b) the same cluster shifted to the right by 5 samples, so that rank (H) = 2.

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020 84/108



0 T T T T T T T T T
3
€ -20 - - —P=2]
[0
IS
c
2401 .
m -
@ e
s - = s =TT
-60 L L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (seconds)
(b)
0 T T T T T T T T T
m
P=
e .
S -10p ———p_2
c 1
[0) L .
E'2O ‘\
[ N
2.30F S<. .
] -~
3 ~ - -
S 40t ST R
1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 35 4 45 5
Time (seconds)

Figure 34: Normalized misalignment of the KF-NKP using o3, = 02, =0, Ly = L, = 10, and
P =1 or 2, corresponding to the impulse responses from Figs. 33(a) and (b). The input signal is

an AR(1) process and SNR = 30 dB.
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Second Set of Experiments
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Figure 35: Impulse responses used in simulations: (a) the first impulse response from G168
Recommendation, with L = 500; (b) the first and the fifth impulse responses (concatenated) from
G168 Recommendation, with L = 500; and (c) acoustic impulse response, with L = 1024.
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Figure 36: Approximation error (in terms of the normalized misalignment), for the identification
of the impulse responses from Fig. 35: (a) impulse response from Fig. 35(a), of length L = 500,
with L1 = 25 and L, = 20; (b) impulse response from Fig. 35(b), of length L = 500, with L; = 25
and L, = 20; and (c) impulse response from Fig. 35(c), of length L = 1024, with Ly = L, = 32.
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Figure 37: NM of the KF-NKP (using different values of P) and KF, for the identification of the
impulse response which changes after 3 seconds from Fig. 35(a) to (b). The input signal is an
AR(1) process, L = 500, and SNR = 20 dB. The KF-NKP uses Ly = 25, L, = 20, and

0%, = 0%, = 1078; the KF uses the same value of 0%,
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Figure 38: NM of the KF-NKP (using different values of P) and KF, for the identification of the
impulse response from Fig. 35(c), which is changed after 3 seconds, by shifting to the right by 12
samples. The input signal is an AR(1) process, L = 1024, and SNR = 20 dB. The KF-NKP uses
Ly = Lp =32 and o3, = 0%, = 1078; the KF uses the same value of its uncertainty parameter.
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Figure 39: NM of the KF-NKP, for the identification of the impulse responses which changes
after 6 seconds from Fig. 35(a) to (b). The input signal is an AR(1) process, L = 500, and

SNR = 20 dB. The KF-NKP uses Ly = 25, L, = 20, P = 5, and different values of 53, and o2,
including the estimated one.
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Figure 40: NM of the KF-NKP (using different values of P) and KF, for the identification of the
impulse response from Fig. 35(c), which is changed after 3 seconds, by shifting to the right by 12
samples. The input signal is an AR(1) process, L = 1024, and SNR = 20 dB. The KF-NKP uses
Ly = Lp = 32, while the specific parameters o2, and 0%, are estimated; the KF uses the
uncertainty parameter estimated as in [Paleologu et al., Proc. IEEE ICASSP, 2014].

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020 91/108



KF-NKP
0 — — — RLS-NKP| |

Misalignment (dB)

35 L L L L L

Time (seconds)

Figure 41 : Normalized misalignment of the KF-NKP and RLS-NKP algorithm (using Ly = 25,
L, =20, and P = 5), for the identification of the impulse response from Fig. 35(a). The impulse
response changes after 6 seconds. The input signal is a speech sequence, L = 500, and

SNR = 20 dB. The KF-NKP uses o2, and 0%, estimated.
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Figure 42: Normalized misalignment of the KF-NKP and RLS-NKP algorithm (using

Ly = L, = 32 and P = 10), for the identification of the impulse response from Fig. 35(c). The
impulse response changes after 6 seconds. The input signal is a speech sequence, L = 1024,
and SNR = 20 dB. The KF-NKP uses o2, and 0%, estimated.
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@ An Adaptive Solution for Nonlinear System Identification
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@ Previous methods for nonlinearities identification:
— Volterra-based approach
— Neural networks

@ Main problem: very high computational complexity
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@ Previous methods for nonlinearities identification:
— Volterra-based approach
— Neural networks

@ Main problem: very high computational complexity

@ Our solution:
— Compute the Taylor series expansion
— Approximate the function using its first significant Taylor series
coefficients, neglecting the other ones
— Find the coefficients using an adaptive algorithm
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The Nonlinearities Identification Problem

’

Figure 43: System model.

— X: zero mean real valued input signal

— g(x): nonlinear, bijective, odd-type function with the Taylor series
expansion of the form g(x) = SV (gxkx¥)

— d(n) = g"x(n) + w(n): system output, corrupted by AWGN

— e(n) =d(n)—§"x(n) = (g7 — §")x(n) + w(n): output error
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The Nonlinearities Identification Problem

@ Goal - obtain an estimation of the coefficient vector:
a(n) = [G1(n), Ga(n), ..., Gu(m)]”
@ Criterion to minimize - mean-square error (MSE):
J(n) = E[€?(n)] = 04 — 24" p + " Rg, where
— 04 = E[d?(n)] - desired signal variance
— p = E[x(n)d(n)] - cross-covariance between the input signal

x(n) and the desired signal d(n)
— R = E[x(n)x"(n)] - covariance matrix of the vector x(n)

@ Wiener-Hopf solution: g, = R~ 'p
@ Problems: — the system should be time-invariant
— statistical expectations need to be known

Laura-Maria Dogariu Tensor-based Adaptive Techniques November 21-26, 2020 97/108



The Adaptive Approach

Least-Mean-Square (LMS) solution:
a(n) = g(n—1) + ux(n)ea(n)

— ea(n) =d(n) — QT(n — 1)x(n): a priori error

— u: step-size parameter

Normalized LMS (NLMS) solution:

#N) = mips

— «: normalized step-size (0 < a < 2)
— 4: regularization parameter
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The Adaptive Approach

@ Covariance matrix of the input signal:
R=E{x(mx"(n)}=1[nlij=1..M rj;=E{x"(n)}
— R must be non-singular and have a small condition number

6000
~——Uniformly distributed
& 5000 —Gaussian, limited in amplitude to +/-1
5 Gaussian
i
2 4000
E
£ 3000
c
'-g 2000 \
g //7
© 1000
0 I ! I !
0 0.2 0.4 0.6 0.8 1 1.2

Variance of the input signal

Figure 44: Condition number of R as a function of the signal’s variance for three types of input
signal.
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Experimental Results

Simulation Setup:

@ NLMS filter of length M = 6

@ Input: the first M powers of a zero mean Gaussian signal, limited
in amplitude to +1

@ Functions to be identified: — g(x) = x + 0.3x% + 0.2x°
— g(x) = arctan(ax),0 < a< 1

@ Coefficients’ values
@ Function’s reconstruction
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Figure 45: Evolution of the coefficients g, computed using the NLMS
algorithm for the polynomial function g(x) = x + 0.3x® + 0.2x°. The black
dotted lines are the actual coefficients.
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Figure 46: Representation of the polynomial function and the reconstructed
function when the input x € [—1;1].
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Figure 47: Evolution of the coefficients gx when a change in their values

occurs: g(x) = x + 0.3x3 4 0.2x° for the first 5000 iterations (black dotted
lines), then g(x) = x + 0.4x3 + 0.1x° (red dotted lines).
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Figure 48: Representation of the arctangent function and the reconstructed
function when the input x € [—1;1].
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e Conclusions
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Conclusions

@ Contributions in the area of multilinear system identification

@ Multilinearity is defined in relation to the individual impulse
responses composing the system

@ The systems are modeled using tensors

@ NKP decomposition and low-rank approximation for systems
which are not perfectly separable

@ An adaptive method for nonlinear systems (with small
nonlinearities)

@ Numerous applications, since most real-world systems are
nonlinear
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