
1

Introduction Implementation Results Conclusion

Improving the Gradient Descent Based
FPGA-Placement Algorithm

Tobias Thiemann Timm Bostelmann Sergei Sawitzki

FH Wedel
University of Applied Sciences

Contact: bos@fh-wedel.de

CENICS 2020

2

Introduction Implementation Results Conclusion

Presenter’s Resume

Timm Bostelmann received his
engineer’s degree in computer
engineering from the FH Wedel
(University of Applied Sciences) in
2008. Since then, he is employed at
FH Wedel as a research assistant in
the field of embedded systems. In
addition, he is working towards his
PhD degree at the TU Dresden
(University of Technology) in the field
of reconfigurable architectures.

3

Introduction Implementation Results Conclusion

FPGA Complexity is Rising

XC2018

XC3090

XC4013E

XC4025E

XC4028EX

XCV1000

XCV3200E

XC2V8000

XC4VLX200

XC6VHX565T

XC7V2000T

XCVU440

1985 1990 1995 2000 2005 2010 2015 2020

Year

101

102

103

104

105

106

107
C
on

fi
gu

ra
ti
on

si
ze
/K

b
it

3

Introduction Implementation Results Conclusion

FPGA Complexity is Rising

XC2018

XC3090

XC4013E

XC4025E

XC4028EX

XCV1000

XCV3200E

XC2V8000

XC4VLX200

XC6VHX565T

XC7V2000T

XCVU440

1985 1990 1995 2000 2005 2010 2015 2020

Year

101

102

103

104

105

106

107
C
on

fi
gu

ra
ti
on

si
ze
/K

b
it

EDA Tools have to handle this complexity

Synthesis
Technology-
Mapping Placement Routing Bitstream-

Generation

3

Introduction Implementation Results Conclusion

FPGA Complexity is Rising

XC2018

XC3090

XC4013E

XC4025E

XC4028EX

XCV1000

XCV3200E

XC2V8000

XC4VLX200

XC6VHX565T

XC7V2000T

XCVU440

1985 1990 1995 2000 2005 2010 2015 2020

Year

101

102

103

104

105

106

107
C
on

fi
gu

ra
ti
on

si
ze
/K

b
it

EDA Tools have to handle this complexity

Synthesis
Technology-
Mapping Placement Routing Bitstream-

Generation

4

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Netlist
In0 C0

C1

C3 C4

In1

In2

In3

C2In4

In5

O0

O1

O2

I/O-Cell

Logic-Cell

Architecture

4

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Placement — Illegal Positions

In0 C0

C1

C3 C4

In1

In2

In3

C2In4

In5

O0

O1

O2

4

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Placement — Illegal Types

In2

C0

C1

In1

C2

In5

C3

C4

O2

O0

In3 In4

O1

In0

I The cells are in the grid . . .
I . . . but the cell types are not compatible.

4

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Placement — Legal

In2C0

C1

In1

C2

In5

C3 C4

O2

O0

In3

In4

O1

In0

I The cells are in the grid . . .
I . . . and the cell types are compatible . . .

4

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Placement — Legal

In2C0

C1

In1

C2

In5

C3 C4

O2

O0

In3

In4

O1

In0

I The cells are in the grid . . .
I . . . and the cell types are compatible . . .
I . . . but the performance will be poor.

4

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Placement — Good

In2

C0 C1In1 C2

In5

C3 C4 O2

O0

In3 In4

O1

In0

I The cells are in the grid . . .
I . . . and the cell types are compatible . . .
I . . . and the performance will be good.

5

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Problem Description

Select a resource cell on the target FPGA for every cell of the given
netlist in a way that:
1. Every cell of the netlist is assigned to a resource cell of the

fitting type (e.g IO, CLB, DSP)
2. No resource cell is occupied by more than one cell of the netlist
3. The cells are arranged in a way that allows the best possible

routing

Established Solutions

I Iterative algorithms like Simulated Annealing
I Constructive algorithms like min-cut (recursive partitioning)
I Analytical placement

5

Introduction Implementation Results Conclusion

Netlist Placement for FPGAs

Problem Description

Select a resource cell on the target FPGA for every cell of the given
netlist in a way that:
1. Every cell of the netlist is assigned to a resource cell of the

fitting type (e.g IO, CLB, DSP)
2. No resource cell is occupied by more than one cell of the netlist
3. The cells are arranged in a way that allows the best possible

routing

Established Solutions

I Iterative algorithms like Simulated Annealing
I Constructive algorithms like min-cut (recursive partitioning)
I Analytical placement

6

Introduction Implementation Results Conclusion

Previous Work

Fast FPGA-Placement Using a Gradient Descent Based Algorithm

I Achieved similar results to the reference (based on simulated
annealing) regarding the bounding-box quality

I Is on average 3.8 times faster then the reference
I Results in a significantly longer critical path
I Is working single threaded

This Work

I Different approaches to reduce the length of the critical path
are evaluated

I Different approaches to reduce the runtime (including
parallelization) are evaluated

I Extensive benchmarking

6

Introduction Implementation Results Conclusion

Previous Work

Fast FPGA-Placement Using a Gradient Descent Based Algorithm

I Achieved similar results to the reference (based on simulated
annealing) regarding the bounding-box quality

I Is on average 3.8 times faster then the reference
I Results in a significantly longer critical path
I Is working single threaded

This Work

I Different approaches to reduce the length of the critical path
are evaluated

I Different approaches to reduce the runtime (including
parallelization) are evaluated

I Extensive benchmarking

7

Introduction Implementation Results Conclusion

General Approach

I Measure the quality of the placement with a cost function
I Move all nodes towards the steepest gradient descent
I Legalize the placement
I Repeat optimization and legalization in a loop

Cost Function

An exponential function over the distance between the position of
the node and the bounding-box of the net is chosen as basis of the
cost-function:

Ck = α2 ·
∑
n∈Nk

(
eα1·(xk−maxx (n)) + eα1·(minx (n)−xk)+

eα1·(yk−maxy (n)) + eα1·(miny (n)−yk)
)

7

Introduction Implementation Results Conclusion

General Approach

I Measure the quality of the placement with a cost function
I Move all nodes towards the steepest gradient descent
I Legalize the placement
I Repeat optimization and legalization in a loop

Cost Function

An exponential function over the distance between the position of
the node and the bounding-box of the net is chosen as basis of the
cost-function:

Ck = α2 ·
∑
n∈Nk

(
eα1·(xk−maxx (n)) + eα1·(minx (n)−xk)+

eα1·(yk−maxy (n)) + eα1·(miny (n)−yk)
)

8

Introduction Implementation Results Conclusion

Cost-Gradient

Plot of the gradient for the X coordinate of a node, assuming a net
with the boundaries minx = 1 and maxx = 7:

1 2 3 4 5 6 7

X Coordinate

−1

0

1

C
os
t-
G
ra
d
ie
n
t

α1 = 1
α1 = 2
α1 = 3
α1 = 4

9

Introduction Implementation Results Conclusion

Legalization

Illegal Placement Legal Placement

10

Introduction Implementation Results Conclusion

Placement Phases

1. Presorting (5000 iterations)
high step width, weak legalization

2. Grid placement (1000 iterations)
high step width, stronger legalization

3. Initial detailed placement (1000 iterations)
reduced step width

4. Detailed placement (5000 iterations)
reduced optimization step width

5. Final placement (100 iterations)
no optimization, only legalization

11

Introduction Implementation Results Conclusion

Evaluated Approaches

1. Utilization of multithreading
The algorithm was profiled and a parallelized implementation
was derived

2. Improvement of the initial placement
The initial placement was generated with a min-cut approach
instead of a random initialization

3. Improvement of the critical path
A path metric was introduced to favor nodes on long paths

4. Optimization of the parameters
The parameters of the algorithm were optimized using an
artificial neural network

12

Introduction Implementation Results Conclusion

Benchmarking Setup

I The original gradient algorithm (GPO), the new gradient
algorithm (GPN) and simulated annealing (VPR) are compared

I All measurements are done for twenty common netlists
I Non deterministic values are averaged over ten measurements

Measurement Series

1. Bounding-Box Costs
2. Critical Path
3. Runtime

12

Introduction Implementation Results Conclusion

Benchmarking Setup

I The original gradient algorithm (GPO), the new gradient
algorithm (GPN) and simulated annealing (VPR) are compared

I All measurements are done for twenty common netlists
I Non deterministic values are averaged over ten measurements

Measurement Series

1. Bounding-Box Costs
2. Critical Path
3. Runtime

13

Introduction Implementation Results Conclusion

Comparison of the Bounding-Box Costs

ex
5p
ts
en
g

ap
ex
4

m
ise
x3 alu

4
dif
fe
q
ds
ip
se
q

ap
ex
2
s2
98 de

s

big
ke
y
fri
sc sp

la

ell
ipt
ic

ex
10
10 pd

c

s3
84
17

s3
85
84
.1
clm
a

0

200

400

600

800

1000

1200

1400

1600

1800

VPR

GPO

GPN

Netlists

B
o
u
n
d
in
g
-B
o
x
C
o
st
s

Average(bbcost(GPN)
bbcost(VPR) × 100%) = 100.57%

Average(bbcost(GPN)
bbcost(GPO) × 100%) = 98.73%

13

Introduction Implementation Results Conclusion

Comparison of the Bounding-Box Costs

ex
5p
ts
en
g

ap
ex
4

m
ise
x3 alu

4
dif
fe
q
ds
ip
se
q

ap
ex
2
s2
98 de

s

big
ke
y
fri
sc sp

la

ell
ipt
ic

ex
10
10 pd

c

s3
84
17

s3
85
84
.1
clm
a

0

200

400

600

800

1000

1200

1400

1600

1800

VPR

GPO

GPN

Netlists

B
o
u
n
d
in
g
-B
o
x
C
o
st
s

Average(bbcost(GPN)
bbcost(VPR) × 100%) = 100.57%

Average(bbcost(GPN)
bbcost(GPO) × 100%) = 98.73%

14

Introduction Implementation Results Conclusion

Comparison of the Critical Path

ex
5p
ts
en
g

ap
ex
4

m
ise
x3 alu

4
dif
fe
q
ds
ip
se
q

ap
ex
2
s2
98 de

s

big
ke
y
fri
sc sp

la

ell
ipt
ic

ex
10
10 pd

c

s3
84
17

s3
85
84
.1
clm
a

0

50

100

150

200

250

300

350

VPR

GPO

GPN

Netlists

C
ri
tic
a
lP
a
th
/n
s

Average(critpath(GPN)
critpath(VPR) × 100%) = 121.14%

Average(critpath(GPN)
critpath(GPO) × 100%) = 84.00%

14

Introduction Implementation Results Conclusion

Comparison of the Critical Path

ex
5p
ts
en
g

ap
ex
4

m
ise
x3 alu

4
dif
fe
q
ds
ip
se
q

ap
ex
2
s2
98 de

s

big
ke
y
fri
sc sp

la

ell
ipt
ic

ex
10
10 pd

c

s3
84
17

s3
85
84
.1
clm
a

0

50

100

150

200

250

300

350

VPR

GPO

GPN

Netlists

C
ri
tic
a
lP
a
th
/n
s

Average(critpath(GPN)
critpath(VPR) × 100%) = 121.14%

Average(critpath(GPN)
critpath(GPO) × 100%) = 84.00%

15

Introduction Implementation Results Conclusion

Comparison of the Runtime

ex
5p

ts
en

g

ap
ex

4

m
ise

x3 alu
4
dif

fe
q

ds
ip

se
q

ap
ex

2
s2

98 de
s

big
ke

y
fri

sc sp
la

ell
ipt

ic

ex
10

10 pd
c

s3
84

17

s3
85

84
.1

clm
a

0

20

40

60

80

100

120

140

160

180

200

VPR

GPO

GPN

Netlists

R
un

tim
e

/ s

Average(runtime(GPN)
runtime(VPR) × 100%) = 19.69%

Average(runtime(GPN)
runtime(GPO) × 100%) = 46.39%

15

Introduction Implementation Results Conclusion

Comparison of the Runtime

ex
5p

ts
en

g

ap
ex

4

m
ise

x3 alu
4
dif

fe
q

ds
ip

se
q

ap
ex

2
s2

98 de
s

big
ke

y
fri

sc sp
la

ell
ipt

ic

ex
10

10 pd
c

s3
84

17

s3
85

84
.1

clm
a

0

20

40

60

80

100

120

140

160

180

200

VPR

GPO

GPN

Netlists

R
un

tim
e

/ s

Average(runtime(GPN)
runtime(VPR) × 100%) = 19.69%

Average(runtime(GPN)
runtime(GPO) × 100%) = 46.39%

16

Introduction Implementation Results Conclusion

Conclusion

I The new gradient algorithm is about 5 times as fast as VPR and
more than two times as fast as the original gradient algorithm

I The bounding box quality is about equal for all three algorithms
I That critical path of the new gradient algorithm is about 20%

longer compared to VPR and about 16% shorter compared to
the original gradient algorithm

I Extended benchmarking with even larger netlists might
underline the scalability of the approach

Thank you for your attention!

16

Introduction Implementation Results Conclusion

Conclusion

I The new gradient algorithm is about 5 times as fast as VPR and
more than two times as fast as the original gradient algorithm

I The bounding box quality is about equal for all three algorithms
I That critical path of the new gradient algorithm is about 20%

longer compared to VPR and about 16% shorter compared to
the original gradient algorithm

I Extended benchmarking with even larger netlists might
underline the scalability of the approach

Thank you for your attention!

	Introduction
	

	Implementation
	

	Results
	

	Conclusion
	

