
1

Introduction Implementation Results Conclusion

Improving the Gradient Descent Based
FPGA-Placement Algorithm

Tobias Thiemann Timm Bostelmann Sergei Sawitzki

FH Wedel
University of Applied Sciences

Contact: bos@fh-wedel.de

CENICS 2020



2

Introduction Implementation Results Conclusion

Presenter’s Resume

Timm Bostelmann received his
engineer’s degree in computer
engineering from the FH Wedel
(University of Applied Sciences) in
2008. Since then, he is employed at
FH Wedel as a research assistant in
the field of embedded systems. In
addition, he is working towards his
PhD degree at the TU Dresden
(University of Technology) in the field
of reconfigurable architectures.



3

Introduction Implementation Results Conclusion

FPGA Complexity is Rising
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Netlist Placement for FPGAs
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Netlist Placement for FPGAs
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Netlist Placement for FPGAs

Placement — Illegal Types
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Netlist Placement for FPGAs

Placement — Legal
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Netlist Placement for FPGAs

Placement — Good
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Netlist Placement for FPGAs

Problem Description

Select a resource cell on the target FPGA for every cell of the given
netlist in a way that:
1. Every cell of the netlist is assigned to a resource cell of the

fitting type (e.g IO, CLB, DSP)
2. No resource cell is occupied by more than one cell of the netlist
3. The cells are arranged in a way that allows the best possible

routing

Established Solutions

I Iterative algorithms like Simulated Annealing
I Constructive algorithms like min-cut (recursive partitioning)
I Analytical placement
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Previous Work

Fast FPGA-Placement Using a Gradient Descent Based Algorithm

I Achieved similar results to the reference (based on simulated
annealing) regarding the bounding-box quality

I Is on average 3.8 times faster then the reference
I Results in a significantly longer critical path
I Is working single threaded

This Work

I Different approaches to reduce the length of the critical path
are evaluated

I Different approaches to reduce the runtime (including
parallelization) are evaluated

I Extensive benchmarking
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General Approach

I Measure the quality of the placement with a cost function
I Move all nodes towards the steepest gradient descent
I Legalize the placement
I Repeat optimization and legalization in a loop

Cost Function

An exponential function over the distance between the position of
the node and the bounding-box of the net is chosen as basis of the
cost-function:

Ck = α2 ·
∑
n∈Nk

(
eα1·(xk−maxx (n)) + eα1·(minx (n)−xk )+

eα1·(yk−maxy (n)) + eα1·(miny (n)−yk )
)
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Cost-Gradient

Plot of the gradient for the X coordinate of a node, assuming a net
with the boundaries minx = 1 and maxx = 7:
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Legalization

Illegal Placement Legal Placement
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Placement Phases

1. Presorting (5000 iterations)
high step width, weak legalization

2. Grid placement (1000 iterations)
high step width, stronger legalization

3. Initial detailed placement (1000 iterations)
reduced step width

4. Detailed placement (5000 iterations)
reduced optimization step width

5. Final placement (100 iterations)
no optimization, only legalization
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Evaluated Approaches

1. Utilization of multithreading
The algorithm was profiled and a parallelized implementation
was derived

2. Improvement of the initial placement
The initial placement was generated with a min-cut approach
instead of a random initialization

3. Improvement of the critical path
A path metric was introduced to favor nodes on long paths

4. Optimization of the parameters
The parameters of the algorithm were optimized using an
artificial neural network
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Benchmarking Setup

I The original gradient algorithm (GPO), the new gradient
algorithm (GPN) and simulated annealing (VPR) are compared

I All measurements are done for twenty common netlists
I Non deterministic values are averaged over ten measurements

Measurement Series

1. Bounding-Box Costs
2. Critical Path
3. Runtime
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Comparison of the Bounding-Box Costs
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Comparison of the Critical Path

ex
5p
ts
en
g

ap
ex
4

m
ise
x3 alu

4
dif
fe
q
ds
ip
se
q

ap
ex
2
s2
98 de

s

big
ke
y
fri
sc sp

la

ell
ipt
ic

ex
10
10 pd

c

s3
84
17

s3
85
84
.1
clm
a

0

50

100

150

200

250

300

350

VPR

GPO

GPN

Netlists

C
ri
tic
a
lP
a
th
/n
s

Average( critpath(GPN)
critpath(VPR) × 100%) = 121.14%

Average( critpath(GPN)
critpath(GPO) × 100%) = 84.00%



14

Introduction Implementation Results Conclusion

Comparison of the Critical Path

ex
5p
ts
en
g

ap
ex
4

m
ise
x3 alu

4
dif
fe
q
ds
ip
se
q

ap
ex
2
s2
98 de

s

big
ke
y
fri
sc sp

la

ell
ipt
ic

ex
10
10 pd

c

s3
84
17

s3
85
84
.1
clm
a

0

50

100

150

200

250

300

350

VPR

GPO

GPN

Netlists

C
ri
tic
a
lP
a
th
/n
s

Average( critpath(GPN)
critpath(VPR) × 100%) = 121.14%

Average( critpath(GPN)
critpath(GPO) × 100%) = 84.00%



15

Introduction Implementation Results Conclusion

Comparison of the Runtime
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Conclusion

I The new gradient algorithm is about 5 times as fast as VPR and
more than two times as fast as the original gradient algorithm

I The bounding box quality is about equal for all three algorithms
I That critical path of the new gradient algorithm is about 20%

longer compared to VPR and about 16% shorter compared to
the original gradient algorithm

I Extended benchmarking with even larger netlists might
underline the scalability of the approach

Thank you for your attention!
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