

Electrical and Computer Engineering School

FPGA-Based Obstacle Avoidance and Line Tracking System For Autonomous Mobile Robots

Sorore BENABID¹, Loïc LATOUR², Solène POULAIN³

Email: sorore.benabid@eseo.fr, <a href="mailto:locality.lo

¹ Department of Electronics and Automatic , ESEO ^{2,3}Department of Aeronautical and Aerospace Systems, IPSA Paris, France

The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics CENICS 2020

Dr Sorore Benabid

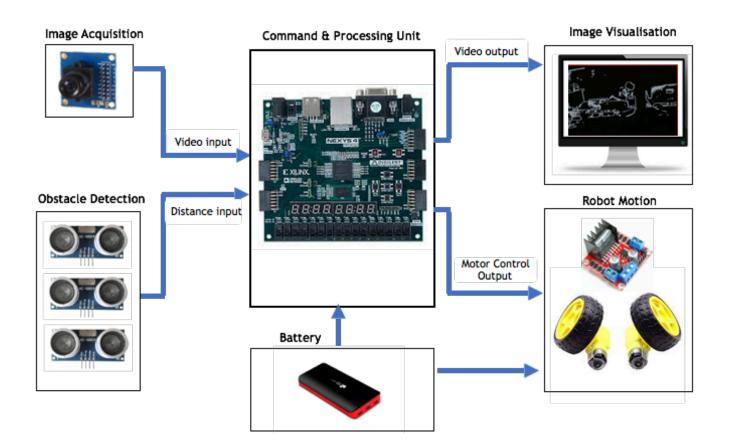
An Associate Professor in electronics and signal processing at Electrical and Computer Engineering School (ESEO), in France, since 2019. She held the same position from 2010 to 2019 at Aeronautical Engineering School (IPSA) in France. From 2014 to 2018, she was an Associate **Researcher** at **Sorbonne University** in System On Chip (SOC) department working on the design of a reconfigurable RF transmitter for the 5G wireless communication systems. Dr. Benabid received her Ph.D from the University Paris Saclay in 2005, on the design of sigma-delta ADC converters at the department of signal and electronic systems at **CentraleSupélec.** In **1999**, she received a **M.Sc. degree in Electronics** from the Paris Diderot University in France. She was born on August 11, 1974 in Algeria. She obtained an Engineer degree in Electronics engineering from Setif University, Algeria, in 1995. Her research interests include embedded systems and information processing, FPGA, AI algorithms, cognitive radio, software defined radio, wireless communication systems, electronics IC design.

Outline

- Introduction and previous works
- Robot architecture
- Experimental results
- Conclusion and perspective

Introduction & Previous work

- Mobile robots are expected to perform increasingly complex tasks in various application fields: space exploration, Intelligent Transport Systems (ITS), military, medicine, service robots, education, ...etc.
- The Mobile robots use different kinds of sensors to collect environmental information and a set of actuators for their motion and reaction to be able to navigate successfully in their environment.
- A powerful and flexible device is necessary to control and manage the set of sensors and actuators present on the mobile robot,
- The Field Programmable Gate Arrays (FPGA) are gaining popularity due to their reconfigurability, parallel ability and real-time response in a dynamic environment.


Introduction & Previous work

• Some related work on the FPGA-based mobile robot navigation

Reference	Proposed architecture
[2013], S. Boroumand and al., Iranian Conference on Fuzzy Systems (IFSC).	A fuzzy algorithm on FPGA-based mobile robot for line tracking and obstacle avoidance purposes
[2015], G. Velez and al., Journal of Real-Time Image Processing,	FPGA-based vision system for Advanced Driver Assistance Systems (ADAS) applications. The developed board contains a SOC composed of a programmable logic for parallel processing, and a µprocessor for serial decision making.
[2017], A. Irwansyah and al., Journal of Parallel and Distributed Computing.	An FPGA-based architecture for multi-robot tracking using multiple GigE Vision cameras. The proposed architecture was implemented comprising a multi-camera frame grabber and IP cores for image processing
[2019], S.Benabid and al., IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)	An FPGA-based vision system for autonomous mobile robots. The proposed system evaluated in real-time the distance between a robot and an object or obstacle in front of it.

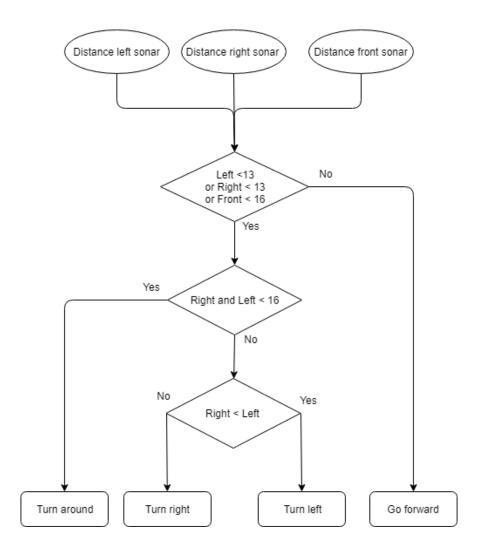
Robot architecture

Embedded system architecture

Robot Specifications

FPGA Board	Nexys 4 DDR - Artix-7
Board Dimension	10,9 x 12,2 cm
Logic Slices:	15 850
Block RAM	4,860 Kbits
DDR2 Memory	128MiB
Operating Frequency	100MHz
Power Supply	4.5V-5.5V
Camera	CMOS Image sensor
Photosensitive Matrix	640 x 480
Issuance formats (8)	RGB 565
Maximum rate:	30 fps in VGA
Pixel height	$3.6 \mu m$
Output format	VGA
DC motor	Decelerate motors ratio 1:48
Drive voltage	12V
Ultrasonic sensor	HC-SR04
Operating voltage	5 V
Operating current	15 mA
Range of distance	2 cm to 400 cm
Battery	EC Technology
Capacity	22400mAh / 82.8Wh
Entry	5V / 2A
Max Output	5V / 3.4A (AUTO)
Dimension	160x80x23mm
Weight	462 <i>g</i>

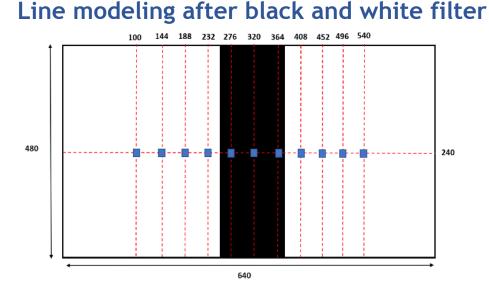
Robot architecture


Robot Motion

The Pulse Width Modulation (PWM) principle is used to control the speed of the robot.

Obstacle Avoidance

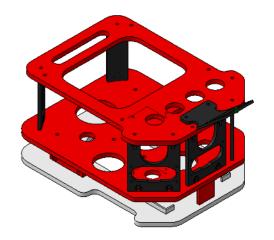
This function was filled by 03 ultrasonic sensors placed at the front of the robot and oriented at different angles. Ultrasonic Sensors measure the distance (D) to the target object by measuring the time (T) between the transmitted and received wave.

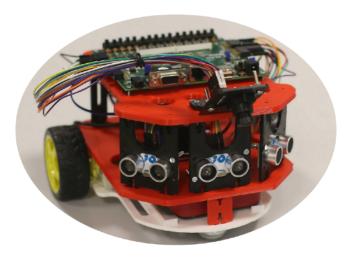

$$D = \frac{T.S}{2}$$
, S represents the sound speed

Robot architecture

Line Tracking

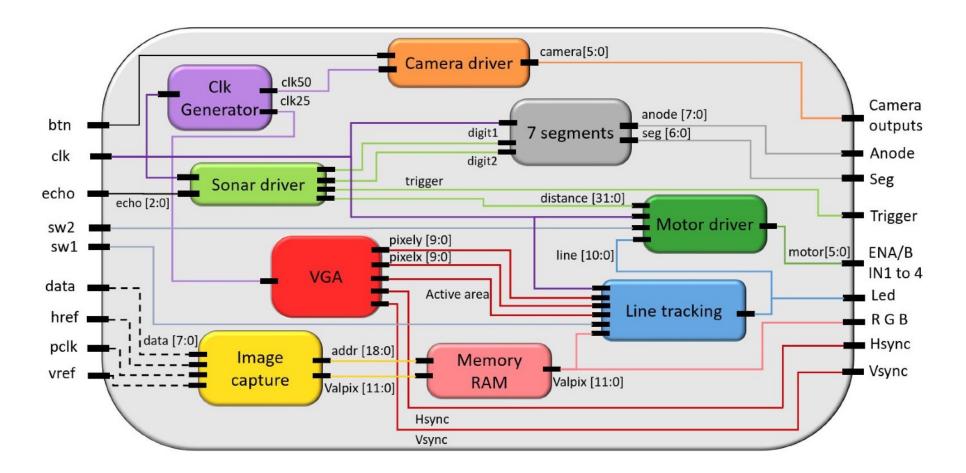
A single camera is used at the front of the robot. We have chosen to track a white line on a black background reversed by a black and white filter. We chose 11 pixels aligned horizontally, represented by an 11-bit binary vector. Each bit of the 11-bits vector are set to "1" (white) or to "0" (black) according to a filter threshold. The line is modeled by 3 bits at the center of the 11-bits vector.


The motor control using the line model


Binary vector	Action on motor	Duty cycle (%)
00111111111	Turn left	65
00011111111	Turn left	60
10001111111	Turn left	60
11000111111	Turn left	50
11100011111	Forward	50
11110001111	Forward	50
11111000111	Forward	50
11111100011	Turn right	50
11111110001	Turn right	60
11111111000	Turn right	60
11111111100	Turn right	65

Experimental Results

Robot Structure Design


- The structure is designed on **CATIA software** (Computer Aided Threedimensional Interactive Application), developed by the **french company Dassault Systèmes**.
- The designed structure is printed by a **3D printer** available at the laboratory of the autonomous aerial systems at **IPSA**.

Experimental Results

The proposed architecture is synthesized only on VHDL code : robot motion, image processing, obstacle avoidance and line tracking

Experimental Results

Black and white filter for line tracking

FPGA resource usage of the proposed system

Resource	Utilization	Available	%
LUT	1107	63400	1,75
FF	481	126800	0,38
BRAM	104	135	77,04
IO	73	210	34,76
BUFG	5	32	15,63
MMCM	1	6	16,67

The **obstacle avoidance video**: <u>https://youtu.be/tjWPFtim8CQ</u> The **line tracking video** : <u>https://youtu.be/SjUswlInYgM</u>

Conclusion & Further work

- An FPGA-based embedded system navigation for the mobile autonomous robots is proposed. The proposed system can detect and avoid the obstacles and track a line.
- The whole architecture is implemented **only in VHDL code**.
- The achieved robot provides a good experimental **platform for academic environment** in collaboration with industrial partners.
- This platform will be further improved and extended for other tasks such as path planning and object recognition algorithms.
- The engineering students will learn and test AI algorithms for mobile robots. They will also be able to propose a new AI techniques for several applications: Intelligent Transportation Systems (ITS), medical application, environmental protection,...etc.