Synonym Predicate Discovery for Linked Data Quality Assessment Without Requiring the Ontology Semantic Relations

Samah SALEM

Lire Laboratory
Abdelhamid Mehri – Constantine 2 University, Constantine, Algeria

Presentation at the 6th International Conference on Big Data, Small Data, Linked Data and Open Data, February 23-27, 2020 - Lisbon, Portugal
OUTLINE

01 Motivation
02 Introduction
03 Quality Assessment Approach
04 Validation
05 Limitations
06 Conclusion and Future work
Motivation

Web of Data

- **Goal**: Link and publish data using typed links to constitute a global network of information
- **Characteristics**: Evolution, heterogeneity, and usefulness
- **Challenge**: Quality problem
 - Duplicate predicates ... (1)
 - Inaccurate values ... (2)
 - Etc.

![DBpedia logo]
Motivation

Web of Data Quality

- Linked Data (LD) quality assessment approaches: **with** or **without** ontology

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Goal</th>
<th>Quality of</th>
<th>Quality dimensions</th>
<th>With/ without ontology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lei et al., 2007</td>
<td>Quality assessment of semantic metadata</td>
<td>Metadata</td>
<td>Accuracy, consistency, conciseness</td>
<td>With ontology</td>
</tr>
<tr>
<td>Fürber and Hepp, 2011</td>
<td>Quality assessment of published data</td>
<td>Literal</td>
<td>Accuracy, completeness, uniqueness, timeliness</td>
<td>With ontology</td>
</tr>
<tr>
<td>Kontokostas et al., 2014</td>
<td>DBpedia quality assessment</td>
<td>Triple</td>
<td>-</td>
<td>With ontology</td>
</tr>
<tr>
<td>Spahiu et al., 2016</td>
<td>Summarize the content of a dataset and reveal data quality problems</td>
<td>Predicate</td>
<td>Accuracy, completeness, uniqueness, timeliness</td>
<td>With ontology</td>
</tr>
<tr>
<td>Jang et al., 2015</td>
<td>Linked data quality assessment</td>
<td>Triple</td>
<td>Accuracy and consistency</td>
<td>Without ontology</td>
</tr>
</tbody>
</table>

But,

- Most approaches, based on the ontology, such as Luzzu [1], SWIQA [2], RDFUnit [3], etc.
- Many datasets are without ontology or with an incomplete one
Motivation

• **What about the quality of datasets without schema/ontology?**
 - Jang et al. [4] approach
 - Assess the quality of LD without requiring ontology
 - Data quality pattern [3]: DQP, RQP, and TQP

• **But,**
 - Lack of specific domain/range setting
 - Quality assessment with only one triple
 - No quality improvement after detecting quality problems is incorporated
Introduction

- **Goal**
 - Assess the quality of triples by detecting errors and eventually measuring the error rate, without using the ontology information

Real-world data

dbr:Hayley_Wickenheiser foaf:gender “f”
dbr:Lando_Calrissian dbp:sex dbr:male
dbr:Hubert_van_Es foaf:gender 25
dbr:Hubert_van_Es foaf:gender “male”

Schema

foaf:gender owl:sameAs dbp:sex
foaf:gender rdfs:domain Person
foaf:gender rdfs:range String
dbp:sex rdfs:domain Person
foaf:gender rdfs:range ObjectType

- Understand the dataset
- Enrich the dataset with metadata
Introduction

• **Idea**
 • A large number of predicates have relationships with each other
 • The possibility of finding two or more predicates, which have the same meaning is very high
 • e.g. `foaf:nick` and `dbp:nickname`
 • Evaluate the quality based on the discovered synonyms
Quality Assessment Approach

1. Synonym predicates discovery
2. Profiling statistics generation
3. Quality assessment
Quality Assessment Approach

Step 1: Synonym predicates discovery

- Semi-automatic
- Based on natural language processing methods
 - Thesaurus-based: WordNet
 - Check spelling methods: Ispell [5], Aspell [6], and MySpell [7]
- Detect quality issues
- Semantic relationships overview
Quality Assessment Approach

Step 2: Profiling statistics generation

- Generate synonym-pattern:
 - a summary that provides a global view of the synonym predicates in the dataset and the predicate frequency \(< p_i(\sum p_i) \equiv_{syn} p_j(\sum p_j) \equiv_{syn} p_n(\sum p_n) > \)
 - e.g. <dbo:birthplace (13), dbp:birthCity (2)>

- Calculate simple profiling statistics, such as
 - the total number of triples in a dataset
 - the property occurrence

- Purpose: Quality score estimation
Quality Assessment Approach

Step 3: Quality assessment

- Quality problems detection
- Quality score estimation
Quality Assessment Approach

Quality problems detection

- Based on synonym predicates and Quality Verification Cases
- Quality Verification Cases
 - Verify the similarity or the difference between the subject and the object of each predicate synonyms pair
 - \(t_i(s_i, p_i, o_i) \land t_j(s_j, p_j, o_j) \mid p_i \equiv_{syn} p_j \)
 - **Case 01:** If \(s_i = s_j \land o_i = o_j \Rightarrow \{p_i(o_i, s_i) \leftrightarrow p_j(o_j, s_j)\} : \) \(t_i \) or \(t_j \) is a redundant triple
 - **Case 02:** If \(s_i = s_j \land o_i \neq o_j \Rightarrow \{p_i \leftrightarrow p_j\} : \) \(o_i \) and/ or \(o_j \) is an inaccurate value
 - **Case 03:** If \(s_i \neq s_j \land o_i = o_j \Rightarrow \{p_i \leftrightarrow p_j\} : \) \(o_i \) and/ or \(o_j \) is an inaccurate value
 - **Case 04:** If \(s_i \neq s_j \land o_i \neq o_j \Rightarrow \{p_i \leftrightarrow p_j\} : \) duplicate information in order to define the same predicate in the dataset
Quality Assessment Approach

Quality scores estimation

• Based on the existing quality score metrics
• Three quality scores:
 • $Q\text{Score} = A_t / T_t$
 • $\text{Acc} - QS = PA_t / T_t$
 • $\text{Co} - QS = PC_t / T_t$
Validation

- DBpedia released in 2019
- Properties of 449 triples
- Available at GitHub repository: https://github.com/SalemSamah/SPDiscovery

Synonym predicates generation
- The experiment revealed several cases of unknown synonymous relationships

<table>
<thead>
<tr>
<th>DBpedia Person</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>foaf:name</td>
<td>dbp:name</td>
</tr>
<tr>
<td>dbo:birthplace</td>
<td>dbp:birthCity</td>
</tr>
<tr>
<td>dbo:birthDate</td>
<td>dbp:birthdate</td>
</tr>
<tr>
<td>foaf:gender</td>
<td>dbo:gender</td>
</tr>
<tr>
<td>dbo:occupation</td>
<td>dbp:occupation</td>
</tr>
</tbody>
</table>
Validation

• **Quality problems detection**
 - 50 abnormal triples that present an error rate equal to 11%
 - The abnormal triples: redundant predicates, redundant triples, and inaccurate values
 - Quality dimensions: accuracy, and conciseness

<table>
<thead>
<tr>
<th>Triples pairs with synonym predicates</th>
<th>Error type</th>
<th>Quality dimension</th>
</tr>
</thead>
</table>
| dbr:Duduka_da_Fonseca, dbo:birthplace, dbr:Rio_de_Janeiro
dbr:Duduka_da_Fonseca, dbo:birthCity, dbr:Rio_de_Janeiro | **Case 01:** The results show that the two triples are equivalent, which means that one of these two triples is redundant. | Conciseness |
| dbr:Paulie_Pennino, foaf:gender, "female"@en
dbr:Paulie_Pennino, dbo:gender, dbr:Male | **Case 02:** The sex of the entity dbr:Paulie_Pennino is inaccurate in one of these two triples since once is defined as “female”, and once is defined as dbr:Male | Accuracy/ Conciseness |
| dbr:Cornelia_(wife_of_Caesar), dbp:diedPlace, dbr:Rome
dbr:Aloysius_Lilius, dbo:deathPlace, dbr:Rome | **Case 03:** The predicates dbp:diedPlace and dbo:deathPlace are defined differently despite that they have the same meaning | Conciseness |
| dbr:Alice_Walker, foaf:gender, "female"@en
dbr:Zack_Addy, dbo:gender, dbr:Male | **Case 04:** In this case, there is duplicate information in order to define the same predicate in the dataset | Conciseness |
Limitations

- Lack of specific setting when the predicate values are represented with different patterns
 - e.g. dbr:Julius_Caesar, dbo:birthdate, ‘−100 - 07 - 13’
 - dbo:birthdate, ‘− 100 - 7 - 13’

 - these triples are identified in **Case 02**, however, they should be identified in **Case 01**

- No quality improvement after detecting quality problems is incorporated
Conclusion & Future work

• Understand the semantics between properties, detect quality problems and estimate the quality scores, without requiring the existence of the ontology information

• Quality issues detected: inaccurate values, redundant predicates, and redundant triples

• Generates semi-automatically the synonym predicates

Ongoing research:

• Applying the approach on large datasets

• Defining more varied metrics

• Improving the quality of data
Thank you for attention
References

