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 Listed in Who's Who in the World and Great Minds of the 21st Century

 Fellow of the British Computer Society, Fellow of the Royal Society of 
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Clement Leung
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 Capture and learn the subtle nuances of human perceptions and 

deep knowledge for searching

 Develop an architectural paradigm enables indexes to evolve 

naturally while accommodating the dynamic changes of user 

interests

 Enable progressive improvement in search performance over 

time

 Use a reinforcement learning framework based on Markov 

Decision Process

 Prevent local optimum and use evolutionary exploration 

strategies which balance exploitation and exploration in 

reinforcement learning

Motivation & Overview
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 Computer vision
 Too slow to deliver

 Dedicated intensive manual indexing infeasible
 Fast creation and slow indexing

 Ratecreation >>  Rateindexing

Text Document
Build Index 

Direct

Multimedia

Annotations

Build Index
?

The Multimedia Data Extraction and 
Indexing Problem
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 Unlike text-based data, no automatic algorithms available for 
effectively extracting information from multimedia data

 Velocity mismatch: the speed of creation of multimedia data is orders 
of magnitude faster than the creation of text-oriented data

Example:

 “Les Misérables” by Victor Hugo

Challenges of Multimedia Data 
Compared with Text-oriented Data

One Image 

by smart Phone
Entire E-book

File size 2~3 MB
About 2.1 MB

(530,982 Text words)

Time taken < 1 second
1815~1832

> 10 years

5
5



 Meaningful 

interpretation of the 

objects in the picture 

constitutes a significant 

semantic element, and 

requires deep 

knowledge  based on 

prior familiarity with the 

subject matter

 Mere visual description 

of image objects is 

insufficient
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Semantic and Deep Knowledge 
Queries

Samson & Delilah

Moses & 10 

Commandments
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 Several hundred attributes (genes) are used 

to characterize songs, such as

 Tempo, Key, Harmony

 Melody, Rhythm, Syncopation

 Piano block chord, octave guitar, 

oboe+flute, etc.

 Mere descriptions of song title, performer, 

lyrics are insufficient to satisfy semantic 

queries

 Effective music search can make use of any 

combination of these attributes, and such 

subtleties and nuances may be learned and 

indexed collaboratively based on 

reinforcement learning principles
7

Music Genome



 Correct identification of foreign military 

installations requires expert knowledge

 Weapons of mass destruction

 Nuclear facilities

 Enables military commanders in to identify 

bombing targets, locate and track enemy forces, 

determine the extent and strengths of fortifications

 President Eisenhower in 1961 originally started the 

US National Photographic Interpretation Center

(NPIC) 

 During World War II, the US Army Air Forces built a 

formidable capability to collect, analyze, and disseminate 

photographic intelligence

 Cuban Missile Crisis

 The functions of NPIC have since been absorbed into the 

National Geospatial-Intelligence Agency (NGA)
8

Expert Knowledge from Imagery 
Intelligence



 A Self-Learning Search Engine (SLSE) is a multimedia search engine 

that continuously learns and evolves to adapt its answer lists to queries 

submitted by users

 When a user submits a query Q, the search engine takes a hybrid 

evolutionary exploration strategy to construct and present a result 

retrieval list of M objects M_List to the user for evaluation

Self-Learning Search Engine
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 Dynamic indexing is an indexing technique that dynamically builds 

semantic indexes to associate query terms with multimedia objects

 New query terms are dynamically constructed as indexes for desired 

objects, and existing indexes are able to be deconstructed according to 

demand

 The relevance score of an index continuously changes during the 

process

Dynamic Indexing
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 SLSE creates a learning function between the object space and the 

query Q to measure the relevance liaison: 

 where T is the space of query terms that represents the input query Q, 

and O is the object space

 The learning function takes the form

 The output of the function is the set of non-negative real numbers r that 

specify the corresponding relevance with 0 indicating complete 

irrelevance

 At the beginning, all RIV scores are initialized by the system; later in 

the usage, the learning function takes the results of the reward function 

as input to update pertinent RIV scores iteratively

Relevance Index Value (RIV)
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 Represented as a Markov Decision Process with five tuple

 with the respective components of state space, action space, 

transition kernel, reward function, and discount factor

 Action Space: consists of a series of actions that the agent 

selects M objects to form an M-List and presents to the user

 State Space: a set of all indexes in the dynamic indexing 

component, including the explored and unexplored ones 

together with their RIVs 

 For unexplored indexes, their RIV are below a pre-defined 

threshold h > 0, while for explored indexes, their RIV are at or 

above it

Markov Decision Process
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Learning Based Architecture

X

Net Positive Rewards

 After taking a particular action, RIV scores change accordingly, 

causing a corresponding state transition in the system

 The long-term goal of SLSE is to expose unexplored indexes for 

retrieval, and reward will be the net change in the total RIV scores as 

a result of an action
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 When a user submits a query Q, the search engine constructs a set of 

MQ objects, which is a set containing M objects called M-List, and 

present it to the user for evaluation

 Each object will have a relevance score with respect to the query, and 

those objects with the highest relevance scores will be selected for 

inclusion in the M-List

⇒ Objects with high RIV will be shown repeatedly for user 

evaluation

 The RIV of these objects tends to keep increasing even though they 

may not be the most relevant as these are selected as relevant 

(clicked) by the users

 The most relevant objects may not stand any chance of having their 

RIV increased since they are not shown to the users for evaluation

 Local optimum problem

 objects that have the highest RIV may not in fact be the most 

relevant

Pure Exploitation Search
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Departure from Pure Exploration Search

 The candidate returned objects MQ for the M-List

of Q should not be just consisting of those objects 

having the highest relevance score

 The M-List should aim to contain two categories of 

objects:

 a K-object subset Oa that has the highest 

cumulative RIV scores from exploitation, and 

 a subset Ob of random objects selected for 

exploration, i.e.

MQ = Oa ∪ Ob
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ε-Greedy Search

 In the case of pure exploitation search, we have 

|Oa| = K = M

|Ob| = 0

 Since |Oa| = M would risk landing in a local 

optimum for the query Q, we wish to strike a 

balance between exploitation and exploration 

⇒ Design the M-List in such a way that

|Oa| < M

|Ob| > 0
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ε-Greedy Search

 Here, we assume that the ordering of objects within the M-list is 

unimportant, and repeated sequential presentations of the M-list 

in response to the given query Q (mostly likely from different 

users) are denoted by the M1, M2, M3, …, where Mi signifies the 

ith M-list presented for the query Q

 For 0 < ε < 1, we let r = εM, and K=(1-ε)M

 i.e. we include r randomly chosen objects in the M-list, 

where each available object apart from the K objects from 

exploitation is chosen with equal probability

 Without jeopardizing the performance of the search system, we 

in general use a small value for ε, and in this study we take ε < 

15%

|Oa| = K > 0.85M

|Ob| = r  < 0.15M
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ε-Greedy Algorithm A

 When a given 

random object Z 

has been included 

in a previous M-list 

presentation, it can 

be re-selected for 

inclusion in a 

subsequent M-list 

presentation in the 

exploration process 

 Advantage: Greater 

fault-tolerance –

the most relevant 

object can be 

shown again
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 Let X be the multimedia object that is most relevant to the query Q, but 

its current RIV is not sufficient for inclusion in Oa

 Let Ur,M the random variable signifies the time to discover X for the first 

time; we have

ℙ 𝑼𝒓,𝑴 = 𝑘 = α𝑟,𝑀β𝑟,𝑀
𝑘−1,

where 

α𝑟,𝑀 =

𝑁−𝑀+𝑟−1
𝑟−1

𝑁−𝑀+𝑟
𝑟

,

and αr,M + βr,M = 1

 The corresponding probability generating function is given by

𝐹 𝑧 =
α𝑟,𝑀𝑧

1 − β𝑟,𝑀𝑧
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Performance of EGSE-A



 The mean and variance of Ur,M can be obtained by differentiation

Performance of EGSE-A
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E 𝑼𝒓,𝑴 =

𝑁−𝑀+𝑟
𝑟

𝑁−𝑀+𝑟−1
𝑟−1

Var 𝑼𝒓,𝑴

=

𝑁−𝑀+𝑟
𝑟

2

𝑁−𝑀+𝑟−1
𝑟−1

2 ×

𝑁−𝑀+𝑟
𝑟

− 𝑁−𝑀+𝑟−1
𝑟−1

𝑁−𝑀+𝑟
𝑟



ε-Greedy Algorithm B

 When a given 

random object Z 

has been included 

in a previous M-list 

presentation, it is 

excluded in a 

subsequent M-list 

presentation in the 

exploration process 

 Advantage: Greater 

efficiency in the 

speed of discovery

21



 We denote by fr,M,, k the following first passage probability

𝑓𝑟,𝑀,𝑘 = ℙ 𝑋 ∈ 𝑀𝑘 ∶ 𝑋 ∉ 𝑀1, … , 𝑋 ∉ 𝑀𝑘−1

 For k = 3, we have

𝑓𝑟,𝑀,3 = ℙ 𝑋 ∈ 𝑀3 ∶ 𝑋 ∉ 𝑀1, 𝑋 ∉ 𝑀2

=

𝑁−𝑀+𝑟−1
𝑟

𝑁−𝑀+𝑟
𝑟

×

𝑁−𝑀−1
𝑟

𝑁−𝑀
𝑟

×

𝑁−𝑀−𝑟−1
𝑟−1

𝑁−𝑀−𝑟
𝑟
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Performance of EGSE-B



 The general recurrence relationship for 𝑓𝑟,𝑀,𝑘 can be seen to be

𝑓𝑟,𝑀,𝑘+1 = 𝑓𝑟,𝑀,𝑘 ×

𝑁−𝐾−𝑘𝑟
𝑟

𝑁−𝐾−𝑘𝑟−1
𝑟−1

×

𝑁−𝐾−𝑘𝑟−1
𝑟

𝑁−𝐾−𝑘𝑟
𝑟

×

𝑁−𝐾−(𝑘+1)𝑟−1
𝑟−1

𝑁−𝐾−(𝑘+1)𝑟
𝑟

,

where the second factor serves to remove the successful inclusion 

probability in  fr,M,, k, and then replace this success probability by a 

failure to include X probability, which is the third factor. The final factor 

gives the successful inclusion probability at the (k+1)th presentation 

after k failed attempts to include X before
23
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 Solution of the above yields the mean and variance of 𝑽𝒓,𝑴, 

which is the random variable signifying the discovery of X for the 

first time

E 𝑽𝒓,𝑴 =
𝑁 − 𝑀 + 2𝑟

2𝑟

Var 𝑽𝒓,𝑴 =
1

12
{[

𝑁 − 𝑀 + 𝑟

𝑟
]2 − 1}
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Performance of EGSE-B



Experimental Evaluations

Expected Discovery Time of EGSE-A

Settings: N = 10,000, M = 100
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Expected Discovery Time of EGSE-B. 
Settings: N = 10,000, M = 100,  ε = 0.1. 

Sample Images from Dataset



Experimental Evaluations

26

Final Returned M-List of “grand piano” using EGSE-A
Settings: N = 1,000, M = 50, ε = 0.1

Note that the correct result is retrieved even 

though it is incorrectly labeled as “guitar”



Experimental Evaluations

Distribution of RIV Scores
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Experimental Evaluations
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Distribution of Initial RIV Scores for 

Each Category (EGSE-B)



Experimental Evaluations

Distribution of RIV Scores for Each 

Category when Hidden Object X is 

Discovered (EGSE-B)
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Evolution of Query Precision against 

Query Time



Experimental Evaluations

Expected Discovery Time of EGSE-A

Settings: N = 10,000, M = 100
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Experimental Evaluations
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Expected Discovery Time of EGSE-B. 
Settings: N = 10,000, M = 100,  ε = 0.1. 



Experimental Evaluations

Expected Discovery Time of EGSE-B with 

ε = 0.12, 0.13
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Experimental Evaluations
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Probability of discovering the most relevant 

object in EGSE-B with time constraints



 Pure exploitation strategy can risk landing in a local 

optimum

 The ε-greedy strategy allows a balance between 

exploration and exploitation and avoids the local optimum 

problem

 EGSE-A, which has the advantage of having greater fault-

tolerant

 EGSE-B, which has the advantage of sweeping the entire 

search space rapidly

Advantages

34



 In a SLSE, it is important to be assured that the 

learning process will eventually lead to the correct 

terms being indexed

 Let X(t) be the number of times that an unexplored 

index is being indexed (i.e. receive reinforcement) 

in the time interval (0, t), with Pr[X(t, t+ε) > 1] = o(ε)

Learning Convergence
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 Let dX(t) denote the number of times the unexplored 

index is indexed in the time interval (t, t+dt), and a(t) = 

E[dX(t)]/dt

 The value of a(t) depends on actual usage, popularity 

and indexing frequency of the search engine

 Very often the point process is taken to be a stationary 

non-homogeneous process, and if further the point 

events are uncorrelated, we can take the probability that 

the unexplored index remaining unexplored in the time 

interval (0, t) to be exp(−αt)

Learning Convergence Behavior
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 Let St be the number of unexplored indexes in the system at time t, 

then it can be shown that

 Since the average of St → 0 as t → ∞, this indicates eventually the 

entire collection of unexplored indexes will be fully discovered

Learning Convergence Behavior
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 Let Ts denote the expected time spent on indexing a proportion 

p of unexplored indexes 

⇒ the proportion of exposed explored indexes during a time 

interval Ts is

Learning Convergence Behavior
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Learning Convergence Behavior

E(St)                                                                  p

S0 = 500,000                                                                  
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Learning Convergence Behavior

S0 = 6,000,000                                                                  

E(St)                                                                  p
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Experimental Evaluations

(a) S0=60,000, λ=8,000, α=1/15 

Changes of remaining unexplored indexes

λ = Poisson feedback rate

Green dotted line corresponds to simulation. Green line corresponds to theoretical results
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Experimental Evaluations

(b) S0=500,000, λ=50,000, α=1/20 

Changes of remaining unexplored indexes

λ = Poisson feedback rate

Green dotted line corresponds to simulation. Green line corresponds to theoretical results
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Experimental Evaluations

(c) S0=500,000, λ=67,000, α=1/15 
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Experimental Evaluations

(d) Overview of no. of clicks when converged
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 By applying reinforcement learning to a Self-Learning Search 

Engine within a Markov decision process framework, the subtle 

nuances of human perceptions and deep knowledge are 

gradually captured and learned 

 Semantic indexes are built dynamically to interconnect search 

terms with the most relevant media entities and achieves steady 

improvements in search performance over time

 Learning convergence will be eventually achieved in the course 

of normal usage, indicating that the Self-Learning Search 

Engine architecture based on reinforcement learning is able to 

confer distinct advantages.

Conclusion
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