
Automated Configuration in Adaptive IoT Software 
Ecosystems to Reduce Manual Device Integration Effort: 
Application and Evaluation of a Novel Engineering 
Method
Fabian Burzlaff (University of Mannheim), Steffen Jacobs, Christian Bartelt

Contact: burzlaff@es.uni-mannheim.de



Short Resume: Fabian Burzlaff

Fabian Burzlaff works since 2016 as a scientific assistant at the

Institute for Enterprise Systems (InES) and is currently in the final

phase towards his PhD in Computer Science.

From 2010 until 2016, he earned his Bachelor and Master degree

in Business Informatics at the University of Mannheim.

Aside from research, he has worked as a freelancer in the field of

IT consulting in multiple projects. Since 2017, he is an elected

member of the advisory council for a German student consultancy

firm.

In his free time, Fabian spends most of his time in nature doing all

kind of activities. His favorites are hiking, running and swimming.

2



Research Interests and Selected Projects

3

• Software Architecture

• Internet of Things

• AI-based Service Systems 

• Smart Systems

• System Integration

• Web Services

Presenters Research Interests

• ARBAY: Augmented-Reality platform for selling full of variety products

• https://arbay-projekt.de/de/

• VanAssist: Interactive and intelligent System for autonomous vans 

• https://www.vanassist.de/

• CrowdMyRegion: A social delivery network

• https://crowdmyregion.de/

Selected Projects@InES

• Logic and Reasoning

• Declarative Languages

• Software Ecosystems

• Microservices and REST

• Empirical Software Engineering

• Knowledge Management

https://arbay-projekt.de/de/
https://www.vanassist.de/
https://crowdmyregion.de/


Outline of this talk

1. Use Case and Problem Statement

2. Novel Integration Method

3. Related Work

4. Evaluation Design and Results

5. Discussion

4



1/5 Use Case and Problem Statement 

5



First of all, lets introduce some basic terms that we are using 
throughout our presentation

• Software Component: A piece of software that conforms to a component model 

and provides and requires functionality by the concept of an interface

• Interface Description Language: An Interface Description Language defines a set 

of functionality in a programming-language independent way. 

• Software Component Interoperability: Software components are compatible if 

there exists a contract between their interfaces that maps all necessary interface 

description elements (i.e., they can be integrated). Semantic interoperability in 

distributed systems is mainly achieved by establishing semantic 

correspondences (i.e., mappings) between vocabularies of different services

• Semantic Component Interoperability: Semantic Interoperability ensures that 

services and data exchanged between a provided and a required interface 

makes sense - that the requester and provider have a common understanding of 

the "meaning" of services and data

6



Next, these definitions are applied on a use-case where a 
smart door should be replaced within an automation rule

7

Is „close“ to be translated with „next to (another object)“ or with „close/opposite to open“?

For a human, this is an easy task. For a software component, this is hard.



2/5 Novel Integration Method

8



Semantic interoperability in distributed systems is mainly 
achieved by establishing semantic correspondences (i.e., 
mappings) between vocabularies of different services

9



We call our novel Knowledge-driven Architecture Composition

10



3/5 Related Work 

11



In contrast to existing work, we believe that our method is 
novel due to the following differences

12

• Semantic Web 
Service Description 
Languages 

• e.g. WSDL-S 

2004, SAWDSL 

2007

• Attach formalized 

„semantics“ to 

interface

• Ontology Matching 

• Niepert 2011, 

Meilicke 2011

• Match knowledge 

bases

• 28 years of 
component-based 
software engineering

• Vale 2015

• Component adaptation 

• Hummel 2008, 

Becker 2004

• Using test-cases for 

creating 

(semantically) 

correct adapter

• Fuzzy Service matching 

• Platenius 2016

• Combination of 

Fuzzy matching 

techniques

Software Engineering Artificial Intelligence Our Method

• Bottom-up instead of 
top-down

• No predefined ontology 
at system design time

• Evolution instead of 
revolutionary

• Incompleteness of 
integration knowledge is 
explicitly allowed

• Case-based instead of 
process between humans

• Formalization effort is 

lowered as practitioners 

only formalize what they 

actually use

• Reuse allows for 
automated integration



4/5 Evaluation Design and Results 

13



We evaluated our method with students by providing the 
following storyline

14

Storyline

A new automation rule has been downloaded to your home automation platform. 
However, the rule is not working as other devices have been initially used. 

Your task is to replace all data-channels until the graphical state visualization 
provided by the home automation platform of each device is acting accordingly 
to the meaning conveyed by the displayed automation rule



The following logical architecture was implemented to support 
the knowledge-driven architecture composition method

15



The following logical architecture was implemented to support 
the knowledge-driven architecture composition method

16



The user interface for formalizing and storing integration 
knowledge as well as exporting adapted automation rules 
was kept simple

17



During the evaluation, overall integration time for six 
automation rules were measured

18

Baseline Specification Reuse

Rule 1 42 : 12 57 : 30 38 : 22

Rule 2 38 : 10 59 : 26 0 : 0

Rule 3 32 : 9 54 : 29 25 : 13

Rule 4 31 : 10 43 : 18 0 : 0

Rule 5 31 : 10 40 : 20 30 : 16

Rule 6 34 : 16 51 : 19 0 : 0

• Average Time : Variance in seconds

• Baseline: Manual Integration

• Specification: Method-specific formalization of integration knowledge

• Reuse: Integration knowledge retrieved from knowledge base due to previous 

integration cases 



During the evaluation, overall integration time for six 
automation rules were measured

19

Baseline Specification Reuse

Rule 1 42 : 12 57 : 30 38 : 22

Rule 2 38 : 10 59 : 26 0 : 0

Rule 3 32 : 9 54 : 29 25 : 13

Rule 4 31 : 10 43 : 18 0 : 0

Rule 5 31 : 10 40 : 20 30 : 16

Rule 6 34 : 16 51 : 19 0 : 0

• Average Time : Variance in seconds

• Baseline: Manual Integration

• Specification: Method-specific formalization of integration knowledge

• Reuse: Integration knowledge retrieved from knowledge base due to previous 

integration cases 

318,3478571

151,983315

0

50

100

150

200

250

300

350

All Tasks

ti
m

e 
in

 s
ec

o
n

d
s

Baseline

Reuse



5/5 Discussion

20



Overall, the presented results can be regarded as evidence 
that the 

21

Internal Threats to Validity

• Confounding variable: Use Interface 
Design 

• Reusability of mappings was ensured 
early

• Only data mappings instead of services

Expressiveness of Evaluation

External Threats to Validity

• Small population size (15 students) 
does not allow for generalization

• Situational factors: Students have been 
instructed in skype sessions and 
sometimes used multiple monitors

• Only one evaluation run



Overall, the presented results can be regarded as evidence 
that the 

22

Internal Threats to Validity

• Confounding variable: Use Interface 
Design 

• Reusability of mappings was ensured 
early

• Only data mappings instead of services

Expressiveness of Evaluation

External Threats to Validity

• Small population size (15 students) 
does not allow for generalization

• Situational factors: Students have been 
instructed in skype sessions and 
sometimes used multiple monitors

• Only one evaluation run

Executive Summary of this paper

We applied and evaluated a novel integration method called Knowledge-driven Architecture 
Composition that explicitly allows for manual integration effort without sacrificing reliability.

Therefore, we propose an architecture, provide tool support and empirically evaluate them 
with students.

In the future, we plan to expand our method towards HTTP services and more complex 
reusability principles



End – Thank you for your attention!

23



Backup

24



Overall Average Participant Performance

25

24,15

10,87

49,15

0

10

20

30

40

50

60

Average

Ti
m

e 
in

 S
ec

o
n

d
s

Average Config Time Average Testing Time Average Spec. Time


