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Motivation 1 - KAISERSLAUTERN

Specification of Safety Requirements of Self-Adaptive Systems (SAS)

* There are several attempts to target uncertainty in requirements of SAS
» Safety requirements of SAS are not properly addressed

» Lack of guidance on how to specify safety requirements that are properly traceable to the

architecture design and to failure propagation models

* No clear methods neither recommendations —to our best knowledge- explain how to elicit

or manage safety requirements of SAS
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Motivation 2 - KAISERSLAUTERN

Validation of Safety Requirements of SAS at Design time

* The earlier the error is detected the less impact it has on the development’s cost and

effort

» Trace errors and locate potential design flows before the actual implementation takes

place

* Provide the system designer and system analysts with a systematic method to validate

the system design and architecture at design time
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Motivation 3 - KAISERSLAUTERN

Auto-generation of Test Cases to Verify the Safety of the SAS

* Documented test cases are essential for testing large and complex systems such as SAS
» Usually test cases are derived manually from the textual requirements
* Manual test case generation is a time consuming and error-prone process

» Test case generation proved to be a powerful approach to reduce the cost of testing as

well as to assure the requirements’ coverage

* Non of the test cases’ auto-generation approaches —to our best knowledge- has

addressed the safety requirements of SAS
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Requirements at Design Time
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Conclusion I - KAISERSLAUTERN

» Building adaptable systems in safety-critical environments is a challenging task
» Our proposed approach addresses some of these challenges in requirements elicitation and
system design phases

» We first tackle the problem of specifying safety requirements of SAS and how we integrate
them in the adaptation strategies
* We generate adequate test cases to test the expected behavior of the system which enable

us to get an early feedback before system implementation

« We use a simulator to run the generated test cases at design time to identify the flaws in

safety requirements
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