= KAISERSLAUTERN

ise 0101

software engineering dependability

Validation of Self-Adaptive Systems’ Safety
Requirements at Design Time

Rasha Abu Qasem Peter Liggesmeyer
Chair of Software Engineering: Dependability Chair of Software Engineering: Dependability
University of Kaiserslautern, Germany University of Kaiserslautern, Germany

abugasem@cs.uni-kl.de

About me - KAISERSLAUTERN

Rasha Abu Qasem

» Bachelor in Information Technology from Damascus University, Syria

» Masters of Science in Software Engineering from University of

Kaiserslautern, Germany

» Researcher and PhD candidate at the Chair of Software Engineering:

Dependability at the University of Kaiserslautern, Germany

oilise O1

software engineering dependability

Motivation 1 - KAISERSLAUTERN

Specification of Safety Requirements of Self-Adaptive Systems (SAS)

* There are several attempts to target uncertainty in requirements of SAS
» Safety requirements of SAS are not properly addressed

» Lack of guidance on how to specify safety requirements that are properly traceable to the

architecture design and to failure propagation models

* No clear methods neither recommendations —to our best knowledge- explain how to elicit

or manage safety requirements of SAS

olise 01

software engineering dependability

Motivation 2 - KAISERSLAUTERN

Validation of Safety Requirements of SAS at Design time

* The earlier the error is detected the less impact it has on the development’s cost and

effort

» Trace errors and locate potential design flows before the actual implementation takes

place

* Provide the system designer and system analysts with a systematic method to validate

the system design and architecture at design time

olise 01

software engineering dependability

Motivation 3 - KAISERSLAUTERN

Auto-generation of Test Cases to Verify the Safety of the SAS

* Documented test cases are essential for testing large and complex systems such as SAS
» Usually test cases are derived manually from the textual requirements
* Manual test case generation is a time consuming and error-prone process

» Test case generation proved to be a powerful approach to reduce the cost of testing as

well as to assure the requirements’ coverage

* Non of the test cases’ auto-generation approaches —to our best knowledge- has

addressed the safety requirements of SAS

olise 01

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time = KAISERSLAUTERN

This approach:

® Extend Extended _[Create DSL for
PSRT PSRT Safety Req.
Ada;::““ l |s a means to evaluate
\ v ¥ the safety requirements of
Safety Textual [Format Req. DSL for L i
Propagation Req. ™ a5 E-PSRT safety Req. a Self aQaptlve SyStem at
Models /' l, design time
Safety Req. Create) Implem.ent Formal . ° Assesses the System
System < Req. as E-PSRT —————————> Req.with —» Representation)) ..
Models DSL of Req. behavior in critical events
System _/ Test Cases Auto- » Gives a clear guidance
del v i .
Models generation about the quality of the
‘ Auto architecture design
Build Simulation Simulation Run)
Models 1 Models Simulator 5:::2212‘: [
 Checks the adherence of
l the architecture design to
Domain
aluation Experts the qverall safety
Test Cases requirements of SAS

é

ise

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time = KAISERSLAUTERN

Extended

® Extend _[Create DSL for
PSRT PSRT "\ Safety Req.
Adaptation
Req. \\
\ \ 4 \ 4
Safety. ., Textual [Format Req. DSL for ° Starting point is the
Propagation ~ Req. "\ as E-PSRT Safety Req.)
Models % textual requirements
% ! |
Safety Req. Create Implem.ent Formal . ° |nput Of the approach
System < Req. as E-PSRT —————————> Req.with —» Representation
Models DSL of Req.
! | « The adaptation
System _/ Test Cases Auto- requirements
del o i .
Models generation « Safety requirements
‘ Auto « Safety propagation
Build Simulation Simulation Run)
Models ™ Models Simulator generated 4——— models
l Test Cases
Domain
Evaluation Experts
Test Cases

é

)ise o1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time J - KAISERSLAUTERN

o Parametrized Safety

Extend Extended _[Create DSL for :
@—— iy " T B Requirements _
Adaptation ! Templates(PSRT) provide
Reg. \ | l guidelines on how to
Safety Textual (Format Req. DSL for specify the safety
Prc;z:g:;on / Req. "\ as E-PSRT Safety Req. requirements of a SyStem
Safety Req. o 1 .mp.elment Formal PSRT assure consistency
System < Req. as E-PSRT ~——=———————p Req.with —» Representation and traceability Of the
Models DSL of Req. .
| safety requirements
System _ [Test Cases Auto-
Models " generation « Extend the PSRTs to
‘ (E-PSRTSs) helps to:
Build Simulation Simulation Run Auto- ° S eCi the Safet
Models T Models Simulator generated |4———— P . fy y
Test Cases reqUIrementS and the
1 adaptation scenarios
Domain Of SAS
Evaluation xpert « identify inconsistent
é safety requirements

oise O1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time = KAISERSLAUTERN

Extended [Create DSL for

o Extend
PSRT PSRT Safety Req.

Adaptation .
Red. \ l Design a language
" ’ to represent the

Safety Textual Format Req. DSL for
. —_— > . .
Propagation Reg. as E-PSRT safety Reg. adaptation scenarios
I
| ¥ and safety
Safety Req. Y .
atety Req Create Implement Formal reqUIrementS Of SAS
System < Req. as E-PSRT —————————> Req.with —» Representation
Models DSL of Req.
| i
System [Test Cases Auto- » Parse the safety
Models - generation .
requwements to a
Build Simulation Simulation Run Auto- formal structure
—> EE— . | ———
Models Models Simulator generated
l Test Cases
Domain
Evaluation Experts
Test Cases

é

oise O1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

= KAISERSLAUTERN

Requirements at Design Time

Adaptation

e \
Safety
Propagation .
Models /
Safety Req.

o—

\ 4

Textual

Extend
PSRT

Extended

—> PSRT

\ 4

_ [Format Req.

Req.

\ 4

Create

System <
Models

!

System

as E-PSRT

\ 4

Req. as E-PSRT

Create DSL for

Models

L

Build Simulation
Models

Simulation
Models

Safety Req.
DSL for * Create the system
Safety Req.
l models and
architecture
Implement Formal
e Req. With > Representation
DSL of Req.
¥ e This step can be
Test Cases Auto-
generation conducted manually
or in a semimanual
Run Auto- .
Simulator generated < — faShlon
l Test Cases
Domain
Evaluation Experts
Test Cases

é

oise O1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time = KAISERSLAUTERN

Extend Extended _[Create DSL for
O—> —_
PSRT PSRT Safety Req.
Adaptation
e \
\ 4 \ 4 . . .
Safet e Build the simulation
are V. Textual _ [Format Req. DSL for
Pr:;’:g:?“ Regq. as E-PSRT Safety Req. models based on
| l the system models
Safety Req. h 4
Create Implement Formal
System < Req. as E-PSRT —————————> Req.with —» Representation . -
Models DSL of Req. e This Step IS
| | conducted manually
System [Test Cases Auto- or in a semimanual
Models generation .
I fashion
110 . . . Auto-
Build Simulation Simulation Run
> — —— | e
Models Models Simulator generated
l Test Cases
Domain
Evaluation Experts
Test Cases

é

oise O1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time = KAISERSLAUTERN

® Extend Extended Create DSL for
PSRT PSRT Safety Req.
Adaptation l
e \
\ 4 \ 4 . .
°
Safety Textual _| Format Req. DSL for DerIVI ng test Cases
Propagation Req. as E-PSRT Safety Req. N a Systema’uc way
Models
Safety Req. » y \l/
Create Implement Formal e AsSsure Coverage Of
System < Req. as E-PSRT > Req.with % Representation 0
Models st of Red. _I all systems’ safety
| | requirement
System _ [Test Cases Auto-
Models g generation

I I * Inject failures
ild Si i i i Auto-
Build Simulation Simulation Run
Models Models Simulator ? generated
l Test Cases

Domain
Evaluation Experts

Test Cases

oise O1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety -

Requirements at Design Time = KAISERSLAUTERN

® Extend Extended Create DSL for
PSRT PSRT Safety Req.
Adaptation
Req.
— \ v Y e Run the simulation
arety Textual Format Req. DSL for .
Propaga:ion Req. as E-PSRT Safety Req. mOdels Ina
Models .
/ l simulator
Safety Req. Create Implement Formal
System < Req. as E-PSRT | | = Req.with —> Representation — ° Feed the Slmulator
Models DSL of Req. .
| with:
System Test Cases Auto- ¢ aUto-generated
Models generation test cases
‘ e domain experts’
Build Simulation Simulation Run Auto-
Models B Models Simulator § generated ‘ teSt CaS.eS
| Test Cases e simulation models
l Domain
Evaluation Experts
Test Cases

é

olise O1

software engineering dependability

Validation of Self-Adaptive Systems’ Safety

Requirements at Design Time = KAISERSLAUTERN

e Extended (O Monitor the simulator
— PSRT 7 PsRT Safety Req. behavior
Adaptation l
Req.
\ v ¥ Compare the expected
Safety Textual [Format Req. DSL for i i
Propagation > Req. p{ Formas fec Satety e, behavior with the
Models / resulted/simulated
v ! l behavior
Safety Req.
Create Implement Formal
System < Req. as E-PSRT —————————> Req.with —» Representation))
Models DSL of Req. Raise alarm in case of
! | deviations or
System _/ Test Cases Auto- hazardous behaviors
Models g generation
‘ Auto. « Trace the behaviors
Bmld“:(l)r::::tlon — Slhmﬂz::::n Emmm— SimRqu:tor $ente£ated 1 back to the initial
l e requirements
v
Domain
Coaluation Experts Perform the needed
Test Cases u pd ates

|
@

)ise o1

software engineering dependability

Conclusion I - KAISERSLAUTERN

» Building adaptable systems in safety-critical environments is a challenging task
» Our proposed approach addresses some of these challenges in requirements elicitation and
system design phases

» We first tackle the problem of specifying safety requirements of SAS and how we integrate
them in the adaptation strategies
* We generate adequate test cases to test the expected behavior of the system which enable

us to get an early feedback before system implementation

« We use a simulator to run the generated test cases at design time to identify the flaws in

safety requirements

olise 01

software engineering dependability

	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	About me
	Motivation 1
	Motivation 2
	Motivation 3
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Validation of Self-Adaptive Systems’ Safety�Requirements at Design Time
	Conclusion

