Sensor Glove Approach for Japanese Fingerspelling Recognition System Using Convolutional Neural Networks

<u>Tomohiko Tsuchiya</u>¹, Akihisa Shitara², Fumio Yoneyama¹, Nobuko Kato¹, Yuhki Shirarishi¹ ¹Tsukuba University of Technology, Japan, ²University of Tsukuba, Japan E-mail: <u>a193102@a.tsukuba-tech.ac.jp</u>

The Thirteenth International Conference on Advances in Computer-Human Interactions ACHI 2020

November 21, 2020 to November 25, 2020 – Valencia Spain

Resume of the presenter

Tomohiko Tsuchiya

I am Deaf

2019.4~ Course of Information Science, Division of Industrial Technology, Graduate School of Technology and Science, Tsukuba University of Technology, Japan

- 1. Background
- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

1. Background

- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Realizing the Sensor Glove Approach for Japanese Fingerspelling Recognition System Hello! Recognition Caption or Voice Sign Language DHH Computer Hearing (Deep Learning)

- 1. Background
- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Related work

Recognition System	features	points		
Image recognition	Hand Camera PC $()) \rightarrow) () () () () () () () ($	Occlusion factorsEnvironmental factors		
Sensor glove recognition	Hand Sensor glove $\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow$	 Sensors can be attached directly to the hands Easy to perform 		

Related work

Number of fingerspelling in each country			types of fingerspelling recognition method in each country				
Language	Dynamic	Static	Sum	type	Recognition method	Fingerspelling target	Recogniti on rate
American	2	24	26	5DT Data Glove 5 Ultra+	Neural Network	Static fingerspelling	94.07%
French	3	23	26	IMU-based	Machine	Static	92%
Japanese	35	41	76	glove*2	Learning	fingerspelling in French	

*1 M. E. Cabrera, J. M. Bogado, L. Fermin, R. Acuna, and D. Ralev, "Glove-based gesture recognition system," in Adaptive MobileRobotics. World Scientific, 2012, pp. 747–753. *2C. K. Mummadi, F. P. P. Leo, K. D. Verma, S. Kasireddy, P. M.Scholl, and K. Van Laerhoven, "Real-time embedded recognition of sign language alphabet fingerspelling in an imu-based glove," in Proceedings of the 4th International Workshop on Sensor-BasedActivity Recognition and Interaction, ser. iWOAR '17.New York,NY, USA: Association for Computing Machinery, 2017, pp. 1–6

- 1. Background
- 2. Related work

3. Objective

- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Objective

JFS recognition by adopting conductive fiber weaving technology, which can reduce the weight and cost of sensor gloves and simplify hand movement.

Evaluated our developed system by classifying 76 JFS characters, including dynamic (non-static) fingerspelling characters

- 1. Background
- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Method-Sensor glove

R. Takada, J. Kadomoto, and B. Shizuki, "A sensing technique for dataglove using conductive fiber," in Extended Abstracts of the 2019 CHIConference on Human Factors in Computing Systems, ser. CHI EA '19.New York, NY, USA: Association for Computing Machinery, 2019, pp. 1–4. [Online].

Method-Sensor glove

Motion amounts : $D_{out} = \frac{1}{N_{max} - N_{min}} * (D_{in} - N_{max})$ Motion direction (Accelerometer 3 dimensions) : $D_{out_acc} = \frac{D_{in_acc}}{2.0}$ Motion direction (Gyro 3 dimensions) : $D_{out_gyro} = \frac{D_{in_gyro}}{250.14}$

Convolutional Neural Network (CNN)

Experiment-Data collection

Participant	20 peoples				
Recognition subjects	76 characters Including dullness, semi-voiced sound, diphthong, and a long vowel				
Acquiring data	Motion amounts (5dimensions) Motion direction (Accelerometer : 3dimensions • Gyro : 3dimensions)				
	Motion	1 character			
Method	Acquiring in second	1 second			
	time	5 times			

- 1. Background
- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Method-madgwick filter and data reduction

Method Recognition

Architecture of convolutional neural network

- 1. Background
- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Experiment-Recognition Result

Number	Accuracy rate of training data	Accuracy rate of test data	Note	Number	Accuracy rate of training data	Accuracy rate of test data	Note
1	93.6%	65.0%	Min recognition rate	11	93.4%	71.6%	
			New	12	93.0%	66.1%	
2	2 94.1% 75.5%		recognition rate	13	94.6%	68.9%	
3	94.8%	68.7%		14	94.3%	70.3%	
4	93.1%	69.7%		15	93.0%	69.7%	
5	94.2%	66.3%		16	93.4%	68.4%	
6	93.9%	73.2%		17	92.9%	71.3%	
7	92.9%	67.9%		18	93.1%	71.1%	
8	93.5%	71.1%		19	94.5%	74.2%	
9	93.0%	67.4%		20	94.5%	72.4%	
10	94.6%	70.5%		Average	93.7%	70.0%	

Teacher	a	sa	ku	yo	ke	te	ki	chi	chi
Prediction	sa	a	yo	ku	te	ke	chi	ki	tsu
Rate (%)	21.0	19.0	14.0	20.0	12.0	28.0	12.0	12.0	34.0
Teacher	tsu	ni	ha	ne	ma	hi	re	wo	xya
Prediction	chi	ha	ni	ma	ne	re	hi	хуа	wo
Rate (%)	32.0	20.0	22.0	13.0	11.0	19.0	23.0	11.0	13.0
Teacher	gi	di	ge	de	di	du	zo	bu	
Prediction	di	gi	de	ge	du	di	bu	ZO	
Rate (%)	12.0	13.0	29.0	20.0	39.0	35.0	14.0	15.0	

It was confirmed hat close contact between the fingers caused these errors.

Notably, the thumb sometimes contacted the forefinger.

Additionally, depending on the participant, the hand may be widely opened or the fingers may be in close contact.

This figure clearly highlights the individual differences in fingerspelling between participants, particularly in the strength of finger bending (including noisy signals), timing of hand move movement, and shape of the fingers.

- 1. Background
- 2. Related work
- 3. Objective
- 4. System Development
- 5. Experimental method
- 6. Result and Discussion
- 7. Conclusions and Future work

Conclusions

• To realize smooth communication between the DHH and hearing people, adopted a lightweight sensor glove using CNN.

- Five dimensions of motion magnitude data, three dimensions of acceleration data, three dimensions of gyro data, and six dimensions of angle for inputs
- We calculated moving averages to reduce the frequency to 4 samples/s.
- A 20-fold cross validation evaluation experiment was conducted.
- The average recognition rate was approximately 70.0%
- The maximum recognition rate was approximately 75.5% ٠
- The firm attachment of conductive fibers was a significant cause of ٠ misrecognition.

Future works

- Constructing improved sensor gloves and investigate methods to handle various problems.
- Planning additional experiments for data collection under more controlled conditions.
- Conducting continuous fingerspelling recognition experiments.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Number #19K11411 and the Promotional Projects for Advanced Education and Research in NTUT. We would like to thank Editage (www.editage.com) for English language editing.