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Related work

Recognition
System features points

Image 
recognition

• Occlusion factors
• Environmental factors

Sensor glove
recognition

• Sensors can be attached  
directly to the hands

• Easy to perform

Camera
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Related work

type Recognition
method

Fingerspelling 
target

Recogniti
on rate

5DT Data Glove
5 Ultra＋

accelerometer*1

Neural 
Network

Static 
fingerspelling 

in ASL

94.07％

IMU-based 
glove*2

Machine 
Learning

Static 
fingerspelling 

in French

92％

Language Dynamic Static Sum

American 2 24 26

French 3 23 26

Japanese 35 41 76

*1 M. E. Cabrera, J. M. Bogado, L. Fermin, R. Acuna, and D. Ralev,“Glove-based gesture recognition system,” in Adaptive MobileRobotics. World Scientific, 2012, pp. 747–753.
*2C. K. Mummadi, F. P. P. Leo, K. D. Verma, S. Kasireddy, P. M.Scholl, and K. Van Laerhoven, “Real-time embedded recognitionof sign language alphabet fingerspelling in an imu-based glove,”
in Proceedings of the 4th International Workshop on Sensor-BasedActivity Recognition and Interaction, ser. iWOAR ’17.New York,NY, USA: Association for Computing Machinery, 2017, pp. 1–6

Number of fingerspelling in each country types of fingerspelling recognition method in each country 
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JFS recognition by adopting conductive fiber weaving 
technology, which can reduce the weight and cost of 
sensor gloves and simplify hand movement.

Evaluated our developed system by classifying 76 JFS 
characters, including dynamic (non-static) fingerspelling 
characters

Objective

11



Contents

4. System Development

12



Method-Sensor glove

USB-connection

MPU6050
Arduino 
mini pro

Sensor 
glove

Conductive fiber

Motion value
(5 dim)

Motion direction
(6 dim)

Gyro sensor

R. Takada, J. Kadomoto, and B. Shizuki, “A sensing technique for dataglove using conductive fiber,” in Extended Abstracts of the 2019 CHIConference on Human Factors in Computing Systems, ser. 
CHI EA ’19.New York, NY, USA: Association for Computing Machinery, 2019,pp. 1–4. [Online]. 

Data 
acuquisiton
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Method-Sensor glove

conductive 
sensor glove

(5 
dimensions)

𝑅!

Motion amounts：𝐷!"# =
$

%!"#&%!$%
∗ (𝐷'( − 𝑁)*+)

Motion direction (Accelerometer 3 dimensions）：𝐷!"#_*-- =
.$%_"''
/.1

Motion direction (Gyro 3 dimensions)：𝐷!"#_234! =
.$%_()*+
/51.$6

MPU6050 Arduino mini pro
𝑅"

𝑉!" =
#7

#7$#8
* 𝑉%&' (1)

𝑅(： variable resistance by 
the conductive  fibers 

𝑅)： fixed resistors  (10𝑘𝛺)

14



15
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Experiment-Data collection

Participant 20 peoples

Recognition 
subjects

76 characters
Including dullness, semi-voiced sound, diphthong, and a long vowel 

Acquiring
data

Motion amounts (5dimensions)
Motion direction（Accelerometer：3dimensions・Gyro：3dimensions）

Method
Motion 1 character

Acquiring in second 1 second
time 5 times 

PC

Participant Sensor Glove
USB

Video
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Method-madgwick filter and data 
reduction

Madgwick
filter

Accelero-
meter
(3dim)

Gyro
(3dim)

Angle
(3dim)

Sin
(3dim)

Cos
(3dim)

Motion 
Amount
(5dim)

Moving 
average

Moving 
average

200 samples
Sin

(3dim)

Cos
(3dim)

Motion 
Amount
(5dim)

Accelero
-meter
(3dim)

Gyro
(3dim)

4 samples
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Method Recognition

Review of 20-fold cross validation

Architecture of 
convolutional neural network
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Experiment-Recognition Result
Number Accuracy rate 

of training data
Accuracy rate 
of test data Note

1 93.6% 65.0% Min 
recognition rate

2 94.1% 75.5% Max 
recognition rate

3 94.8% 68.7%

4 93.1% 69.7%

5 94.2% 66.3%

6 93.9% 73.2%

7 92.9% 67.9%

8 93.5% 71.1%

9 93.0% 67.4%

10 94.6% 70.5%

Number
Accuracy rate 

of training 
data

Accuracy rate of 
test data Note

11 93.4% 71.6%

12 93.0% 66.1%

13 94.6% 68.9%

14 94.3% 70.3%

15 93.0% 69.7%

16 93.4% 68.4%

17 92.9% 71.3%

18 93.1% 71.1%

19 94.5% 74.2%

20 94.5% 72.4%

Average 93.7% 70.0%
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It was confirmed that close 
contact between the fingers 
caused these errors. 

Notably, the thumb sometimes 
contacted the forefinger. 

Additionally, depending on the 
participant, the hand may be 
widely opened or the fingers 
may be in close contact. 

(a) predict “te” as “te” correctly

(d) predict “ke” as “ke” correctly

(c) predict “ke” as “te” incorrectly

(b) predict “te” as “ke” incorrectly
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One person Another person

This figure clearly highlights the individual differences in fingerspelling between 
participants, particularly in the strength of finger bending (including noisy signals), 
timing of hand move movement, and shape of the fingers. 
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Conclusions

• The average recognition rate was approximately 70.0%
• The maximum recognition rate was approximately 75.5%
• The firm attachment of conductive fibers was a significant cause of 

misrecognition.

• To realize smooth communication between the DHH and hearing people, adopted 
a lightweight sensor glove using CNN.

• Five dimensions of motion magnitude data, three dimensions of acceleration data, 
three dimensions of gyro data, and six dimensions of angle for inputs

• We calculated moving averages to reduce the frequency to 4 samples/s. 
• A 20-fold cross validation evaluation experiment was conducted. 
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Future works

• Constructing improved sensor gloves and investigate methods 
to handle various problems. 

• Planning additional experiments for data collection under more 
controlled conditions.

• Conducting continuous fingerspelling recognition experiments.
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