# Rendering Method of 2-Dimensional Vibration Presentation for Improving Fidelity of Haptic Texture

Junya Kurogi<sup>1</sup>, Satoshi Saga<sup>1</sup> <sup>1</sup>Kumamoto University, JAPAN Contact email: {<u>kurogi,saga</u>}@saga-lab.org



**Kumamoto University** 

# Junya Kurogi

 Junya Kurogi received the BS and MS degrees in engineering from Kumamoto University in 2017 and 2019, respectively. He had been engaged in research on a tactile display employing virtual reality. Since 2020, he has been an engineer at Nishi-Nippon Railroad Co., Ltd.

# Our goal

- Developing a <u>rendering method</u> for texture display
  - Based on two dimensional vibration hardware
  - From the recorded vibration, we reproduce the fidelity of the texture





# Problem of the displaying method

• Many random textures can be reproduced by the method

- In some textures, the method cannot reproduce the fidelity
  - Certain spatial frequency textures, such as tiled-floor
- We employ image features







## Further processing

• The vibration of no feature area is diminished by the augmentation

• To avoid this diminishing, we apply the logs



## Augmented vibration applying image features



8

## Textures for experiment

• We prepared 10 types of textures and collect the acceleration information



# Experiment procedure

- Rendering method for comparison
  - 1. One dimensional vibration
  - 2. Two dimensional vibration
  - 3. Feature augmentation  $e_0$  (without log)
  - 4. Feature augmentation  $e_1$  (with log)
- ※For the textures other than Tile, Place Mat1 and Punched Plastic Sheet, we applied the method of 1, 2 only
- Evaluation method
  - ✓ 5 stages Likert scale
- Participants
  - $\checkmark$  7 healthy men aged 22 to 24.
  - They wore headphones and eye mask to remove the visual/auditory effect





#### Discussion



 The proposed method is suitable for presenting textures with random spatial frequencies and a relatively hard tactile sensation

 ✓ Artificial Grass2, Sand Paper, Place Mat2

- The method is suitable for some texture with a constant spatial frequency
  - ✓ Tile, Place Mat1
  - ✓ Especially, the image feature  $e_0$  shows significant difference

### Comparison between image feature augmentation methods



#### Discussion



- $e_0$  has high fidelity on Place Mat1
  - $e_0$ : Enhancement of feature points
  - $e_1$ : Reducing the diminishing of vibration
  - Longest spatial period induces the enhancement of feature point than vibration intensity
- For short spatial period, the augmentation is not effective in Punched Plastic Sheet

 $e_1$ : with log



14

#### Discussion



- $e_0$  has high fidelity on Place Mat1
  - $e_0$ : Enhancement of feature points
  - $e_1$ : Reducing the diminishing of vibration
  - Longest spatial period induces the enhancement of feature point than vibration intensity
- For short spatial period, the augmentation is not effective in Punched Plastic Sheet
- 2 cm



# Conclusions

• Purpose



- Proposal of a presentation method that accurately presents vibration information in the two-dimensional direction
- Proposal of vibration presentation method using superimposition of image features
- Verify the tactile reproducibility of each method
- Result
  - Two-dimensional vibration presentation is suitable for hard, random textures with spatial frequencies
  - An image feature augmentation method is useful for textures with a constant spatial frequency
- Future work
  - Presentation of softness by dynamic vibration control
  - Establishment of a texture selection method suitable for using the image feature superimposition method