

3D Virtual Try-On System Using Personalized Avatars: Augmented Walking in the Real World

Yuhan Liu¹, Yuzhao Liu¹, Shihui Xu¹, Jingyi Yuan¹, Xitong Sun¹, Kelvin Cheng², Soh Masuko² and Jiro Tanaka¹

 ¹ Waseda University, Kitakyushu, Japan
 ² Rakuten Institute of Technology, Rakuten, Inc., Tokyo, Japan E-mail: liuyuhan-op@akane.waseda.jp

Waseda University

Graduate School of Information, Production and Systems IPS

Outline

- Introduction
- Related Work
- Goal & Proposal
- System Design
- Implementation
- Conclusion
- Limitation and Future Work

Introduction- Online Shopping

- With the continuous development of e-commerce, the number of consumers purchasing clothes online is increasing^[1]
- The lack of "direct try-on experience", which may lead to increase perceived risk of purchase due to the difficulty in judging the products' fit

Virtual Try-on technology appear

[1] Magnenat-Thalmann, Nadia, et al. "*3d web-based virtual try on of physically simulated clothes." Computer-Aided Design and Applications* 8.2 (2011): 163-174

Introduction- Virtual Try-on

- Virtual Try-on (VTO) technology
 - Consumers can virtually try the garments on and gain a sense of garment details ^[2]
 - Assist consumers to accurately assess the fit and size in the online shopping environment ^[2,3]
 - Provide convenient and quick fitting for consumers ^[4]

[2] Blázquez, M. Fashion shopping in multichannel retail: The role of technology in enhancing the customer experience. International Journal of Electronic Commerce 2014, 18, 97–116. 750 7.

[3] Gao, Y.; Petersson Brooks, E.; Brooks, A.L. The Performance of Self in the Context of Shopping in a Virtual Dressing Room System. HCI in Business; Nah, F.F.H., Ed.; Springer International Publishing: Cham, 2014; 752 pp. 307–315.

[4] Beck, M.; Crié, D. I virtually try it. . . I want it! Virtual Fitting Room: A tool to increase on-line and off-line exploratory behavior, 5 patronage and purchase intentions. Journal of Retailing and Consumer Services 2018, 740 40, 279–286.

Related Work (1/2)

 2D overlay Virtual Try-on: using AR, enables consumers to try a few augmented products on their selves in the display screen, also called Magic mirror ^[5]

 Without using 3D information -> users can not view their garment from arbitrary viewpoints.

[5] Javornik, A.; Rogers, Y.; Moutinho, A.M.; Freeman, R. Revealing the shopper experience of using a" magic 762 mirror" augmented reality make-up application. Conference on designing interactive systems. Association 763 for Computing Machinery (ACM), 2016, Vol. 2016, pp. 871–882.

Related Work (2/2)

• 3D Virtual Try-on:

- Clothes models and body models are 3D
- Users can check the dressed model from different view

- Predefined virtual body-> Not personalized
- Static

Goal & Proposal

3D Virtual Try-On System Using Personalized Avatars: Augmented Walking in the Real World

Propose a 3D virtual try-on system using personalized models, to enhance shopping experience for users

- **Personalized avatars**(body and face information)
- **3D garment visualization**(online garment images)
- Augmenting the motion of a personalized user body in the real-world(dynamic fitting...)

System Design – System overview

System Design – Human model personalization

- Reduce the gap between physical fitting and online shopping
- An appropriate 3D human body representation corresponding to the real user's human body shape and face features

System Design – Garment model generation

Provide a better online garment product visualization

• Our approach uses garment image information from existing shopping websites (i.e., H&M, Zara) to create a virtual garment

System Design – 3D Virtual Try-on

- Combine VR (Virtual Reality) and AR (Augmented Reality) technology to simulate try-on experience
 - Virtual fitting: users can view their personalized avatar fitting different clothes in several virtual scene
 - Augmented walking: users can view their avatar doing daily life activities in the real environment

Virtual fitting

Augmented walking

Demo Video

WASEDA University Graduate School of Information, Production and Systems

3D Virtual Try-On System Using Personalized Avatars: Augmented Walking in the Real World

Yuhan Liu¹, Yuzhao Liu¹, Shihui Xu¹, Jingyi Yuan¹, Xitong Sun¹, Kelvin Cheng², Soh Masuko² and Jiro Tanaka¹

¹ Waseda University, Kitakyushu, Japan² Rakuten Institute of Technology, Rakuten, Inc., Tokyo, Japan

Implementation — Hardware & Software

Hardware

Mobile Devices:

Google Pixel3

Software

- Development Platform: Unity 2019
- 3D modeling: 3Ds MAX, Blender
- AR setting: Vuforia Augmented Reality SDK

Implementation – Human model personalization

3D human body representation corresponding to the real user's human body shape and face features

captured body shape

[6] Y. Deng et al., "Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 11pages, 2019. Retrieved from https://arxiv.org/abs/1903.08527
 [7] T. Alldieck, M. Magnor, et al., "Video based reconstruction of 3d people models," In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8387-8397, 2018. DOI:https://doi.org/10.1109/CVPR.2018.00875

Implementation – Garment model generation

3D Garment Model Templates

 Build several 3D templates of virtual garment models for the personalized human model using Cloth Weaver^[8]

Several types of clothing templates for female bodies and male bodies

Implementation – Garment model generation

Texture Mapping

- Gather garment information from existing shopping websites (H&M, ZARA)
- Mapping these clothes images to generated 3D garment model templates

Implementation – 3D Virtual Try-on (1/2)

Virtual Reality(VR) -- Virtual fitting

- Immersive and interactive shopping experience
- Several virtual fitting scene(on the street, in the office and at the supermarket)
- Give outfit idea for various occasion or purpose

Fitting in different scenes

Implementation – 3D Virtual Try-on(2/2)

Augmented Reality(AR) -- Augmented walking

- Dynamically interactive virtual try-on experience
- Animate dressed human body in 360 degrees
- View virtual body doing natural activities in the real-life scene

Augmented motion in the real-life scene

Evaluation

- **Participants:** A total of 10 college participants (7M, 3F).
- Experiment Design:
 - (1) **Virtual try-on condition**: simulate the shopping experience with our 3D virtual try-on system
 - (2) Image only condition: simulate typical online shopping experience with only images of garments online
- Procedure:

Measures:

Users' enjoyment, convenience, augmented walking and user behavior

Result (1/3)

Users' enjoyment, convenience

 Participants rated the virtual try-on condition (p< 0.01) significantly higher than image only condition in terms of users' enjoyment, convenience

Enjoyment: Shopping experiences more enjoyable in virtual try-on condition

Convenience: virtual try-on condition gave users a better feel for how these clothes look like on their body

Result (2/3)

Augmented walking, user behavior

- Augmented walking can enhance shopping experience for users and provide a better 3D visualization for users
- All participants preferred the virtual try-on condition
- 9 out of 10 participants wanted to use our system in the future

Result (3/3)

Qualitative Results

Keyword	Conclusion
Garment model	 Better understanding of the detail of clothes More realistic garment
Shopping experience	 Narrow users' selections of clothes Increase their purchase confidence. Increase the enjoyment of shopping experience
Augmented walking	 Better judge of fitting More humanoid motion

Conclusion

Proposed a 3D VTO System using personalized avatars

- Virtual garment models generation based on online garment images
- Provide an interactive, dynamic virtual try-on experience for users using augmented walking

3D Virtual Try-on System is more enjoyable and more convenient than typical experience of using images only

• Enhance shopping experience, better judge of fitting, better understanding of the detail of clothes

Limitation and Future Work

Realistic garment

- Enhance clothing animations and **cloth simulation** methods
- Provide a more realistic virtual try-on effect

Humanoid motion

- Motion capture can also be used to better simulate user's walking motion
- Provide a more realistic and more interactive fitting experience

WASEDA University Graduate School of Information, Production and Systems

Thank you!

IP Lab, IPS, Waseda Univ.